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К.Ш. МАМЕДОВ, Н.О. МАМЕДЛИ 

 

МЕТОДЫ ПОСТРОЕНИЯ СУБОПТИМИСТИЧЕСКОГО И  

СУБПЕССИМИСТИЧЕСКОГО РЕШЕНИЙ ЧАСТИЧНО-БУЛЕВОЙ ЗАДАЧИ О 

РАНЦЕ С ИНТЕРВАЛЬНЫМИ ДАННЫМИ 

 
В работе введены понятия оптимистического, пессимистического, субоптимистического и 

субпессимистического решений для частично-Булевой задачи о ранце с интервальными исходными данными. 

Для этой задачи разработаны методы построения субоптимистического и субпессимистического решений. 

Эти методы основаны на некоторой экономической интерпретации рассмотренной задачи. Проведённые 

многочисленные эксперименты над различными задачами большой размерности со случайными 

коэффициентами еще раз показывают высокую эффективность разработанных методов. 

Ключевые слова: частично-Булевая задача о ранце с интервальными данными, оптимистическое, 

пессимистическое, субоптимистическое и субпессимистическое решения, верхняя и нижняя границы, 

вычислительные эксперименты 
 

1. Введение. Рассматривается следующая задача 

           ∑[𝑐𝑗, 𝑐𝑗]𝑥𝑗 → 𝑚𝑎𝑥,                                                                  (1.1) 

𝑁

𝑗=1

 

            ∑[𝑎𝑗, 𝑎𝑗]𝑥𝑗 ≤ [𝑏, 𝑏],

𝑁

𝑗=1

                                                                 (1.2) 

         0 ≤ 𝑥𝑗 ≤ 1, (𝑗 = 1, 𝑁),                                                          (1.3) 

         𝑥𝑗 = 1⋁0, (𝑗 = 1, 𝑛) (𝑛 ≤ 𝑁).                                                         (1.4) 

Здесь предполагается, что 𝑐𝑗 > 0, 𝑐𝑗 > 0, 𝑎𝑗 > 0, 𝑎𝑗 > 0 (𝑗 = 1, 𝑁), 𝑏 > 0, 𝑏 > 0 и 

целые. Задача (1.1)-(1.4) является обобщением задачи о ранце, интервальной задачи о ранце 

и задачи линейного программирования с одним ограничением: в случае 𝑛 = 0 все перемен- 

ные будут принимать непрерывные значения, т.е. получается интервальная задача линейного 

программирования с одним ограничением. А если 𝑛 = 𝑁, то получается известная интер- 

вальная задача о ранце. Отметим, что в частном случае, если 𝑐𝑗 = 𝑐𝑗 , 𝑎𝑗 = 𝑎𝑗 (𝑗 = 1, 𝑁) и 𝑏 =

𝑏, то получается известная задача частично-Булевого программирования с одним 

ограничением. 

Поскольку вышеперечисленные частные случаи задачи (1.1)-(1.4) являются NP-пол- 

ными, т.е. труднорешаемыми, то рассмотренная в данной работе задача также входит в класс 

NP-полных. Заметим, что для задач входящих в класс NP-полных не существуют методы 

нахождения оптимального решения с полиномиальной сложности [1. с.123]. Все известные 

методы “типа ветвей и границ”, “динамического программирования”, “комбинаторного 

типа”, и т.д. решают задачи лишь небольшой размерности за реальное время [1,2. с.56-58, 

с.78]. С другой стороны в конкретных прикладных задачах число неизвестных и 

ограничений бывают большими, поэтому для решения таких практических задач 

разработаны различные алгоритмы построения субоптимальных (приближённых) решений 

[3-8] и др. 

Отметим, что различные классы рассмотренных задач с интервальными данными ис- 

следованы и разработаны некоторые алгоритмы решения в работах [9-15] и др. 
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В данной работе, в отличие от выше перечисленных задач, рассмотрена более общая 

задача, а именно частично-Булевая задача с интервальными данными. Насколько нам извест- 

но, такая задача, когда только часть переменных принимают Булевые значения не рассмотре- 

ны. В данной работе введены понятия оптимистическое, пессимистическое, субоптимисти- 

ческое и субпессимистическое решения задачи (1.1)-(1.4) и разработаны алгоритмы построе- 

ния субоптисмистического и субпессимистического решений. 

2. Постановка задачи. В начале для задач (1.1)-(1.4) зададим некоторую экономичес- 

кую интерпретацию. Пусть имеются 𝑁 объектов. Из каждых 𝑛 (𝑛 ≤ 𝑁) объектов можно 

использовать либо игнорировать, а для остальных 𝑁 − 𝑛 объектов можно использовать неко- 

торой степени. Если 𝑗­ый объект (𝑗 = 1, 𝑁) выбирается для использования (или частичного 

использования), то возможные затраты входят в интервал [𝑎𝑗, 𝑎𝑗],
 

при этом прибыль 

принадлежит интервалу [𝑐𝑗, 𝑐𝑗] (𝑗 = 1, 𝑁). Допустим, что для использования этих объектов 

выделен ресурс, входящий в интервал [𝑏, 𝑏]. Требуется выбирать для использования (или 

частичного использования) такие объекты, суммарные затраты которых не превышали 

выделенных ресурсов, входящих в интервал [𝑏, 𝑏], а общая прибыль была максимальной. 

Очевидно, что, принимая переменных 𝑥𝑗  (𝑗 = 1, 𝑁), где 𝑥𝑗 =

{
1,   если 𝑗­ый объект выбирается,

0,   в противном случае (𝑗 = 1, 𝑛) 
 

и 0 ≤ 𝑥𝑗 ≤ 1 (𝑗 = 𝑛 + 1, 𝑁), то математический модель задачи будет в виде (1.1)-(1.4). Теперь 

введём некоторые понятия, которые в дальнейшем будем использовать. 

Определение 1. Допустимым решением задачи (1.1)-(1.4) будем называть 𝑁-мерный 

вектор 𝑋 = (𝑥1, … , 𝑥𝑁), который удовлетворяет системе ограничений (1.2)-(1.4) для ∀ 𝑎𝑗 ∈

[𝑎𝑗 , 𝑎𝑗] (𝑗 = 1, 𝑁) и ∀𝑏 ∈ [𝑏, 𝑏]. 

Из этого определения непосредственно следует, что понятия оптимального решения и 

оптимального значения функции (1.1) должны иметь другой смысл в отличие от известных. 

Потому, что не превышение суммы некоторых интервалов от заданного конкретного интер- 

вала [𝑏, 𝑏] и при этом максимальность суммы некоторых интервалов необходимо 

обеспечивать. С этой целью введём ещё несколько следующих определений. 

Определение 2. Допустимое решение 𝑋𝑜𝑝 = (𝑥1
𝑜𝑝, 𝑥2

𝑜𝑝, … , 𝑥𝑁
𝑜𝑝) задачи (1.1)-(1.4) 

назовём оптимистическим, если удовлетворяется неравенство ∑ 𝑎𝑗𝑥𝑗
𝑜𝑝𝑁

𝑗=1 ≤ 𝑏, (𝑏 ∈ [𝑏, 𝑏]) и 

при этом значение функции 𝑓𝑜𝑝 = ∑ 𝑐𝑗𝑥𝑗
𝑜𝑝𝑁

𝑗=1  будет максимальным. 

Определение 3. Допустимое решение 𝑋𝑝 = (𝑥1
𝑝, 𝑥2

𝑝 , … , 𝑥𝑁
𝑝) задачи (1.1)-(1.4) назовём 

пессимистическим, если удовлетворяется соотношение ∑ 𝑎𝑗𝑥𝑗
𝑝𝑁

𝑗=1 ≤ 𝑏, (𝑏 ∈ [𝑏, 𝑏]) и при этом 

значение функции 𝑓𝑝 = ∑ 𝑐𝑗𝑥𝑗
𝑝𝑁

𝑗=1  будет максимальным.
 

Из этих определений видно, что для нахождения оптимистического и пессимистичес- 

кого решений задачи (1.1)-(1.4) необходимо решить некоторую задачу о ранце, которая вхо- 

дит в класс NP-полных. Поэтому мы ввели следующие понятия субоптимистического и суб- 

пессимистического решений задачи (1.1)-(1.4) и разработали алгоритм их нахождения. 

Определение 4. Допустимое решение 𝑋𝑠𝑜 = (𝑥1
𝑠𝑜 , 𝑥2

𝑠𝑜 , … , 𝑥𝑁
𝑠𝑜) задачи (1.1)-(1.4) назовём 

субоптимистическим, если удовлетворяется ∑ 𝑎𝑗𝑥𝑗
𝑠𝑜𝑁

𝑗=1 ≤ 𝑏, (𝑏 ∈ [𝑏, 𝑏]) и при этом значение 

функции 𝑓𝑠𝑜 = ∑ 𝑐𝑗𝑥𝑗
𝑠𝑜𝑁

𝑗=1  будет принимать большое значение. 
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Определение 5. Допустимое решение 𝑋𝑠𝑝 = (𝑥1
𝑠𝑝 , 𝑥2

𝑠𝑝 , … , 𝑥𝑁
𝑠𝑝) задачи (1.1)-(1.4) назовём 

субпессимистическим, если удовлетворяется соотношение ∑ 𝑎𝑗𝑥𝑗
𝑠𝑝𝑁

𝑗=1 ≤ 𝑏 (𝑏 ∈ [𝑏, 𝑏]) и при 

этом значение функции 𝑓𝑠𝑝 = ∑ 𝑐𝑗𝑥𝑗
𝑠𝑝𝑁

𝑗=1  будет принимать большое значение. 

3. Теоретическое обоснование метода. Исходя из вышеуказанной экономической 

интерпретации, представленной в пункте 2, если 𝑗­ый объект (𝑗 = 1, 𝑁) выбирается для 

использования, то требуются расходы, входящие в интервал [𝑎𝑗 , 𝑎𝑗], (𝑗 = 1, 𝑁). При этом 

полученная прибыль должна входить в заданный интервал [𝑐𝑗, 𝑐𝑗] (𝑗 = 1, 𝑁). Отсюда видно, 

что прибыль на каждую единицу расхода, входящая в интервал [𝑎𝑗, 𝑎𝑗], будет составлять 

([𝑐𝑗, 𝑐𝑗])/[𝑎𝑗, 𝑎𝑗]. Очевидно, что необходимо выбирать такой объект с номером 𝑗∗, в котором 

отношение ([𝑐𝑗∗
, 𝑐𝑗∗

])/[ 𝑎𝑗∗
, 𝑎𝑗∗

] будет максимальным. Другими словами, номер 𝑗∗ 

определяется из следующей формулы: 

           max
𝑗

[𝑐𝑗, 𝑐j]

[ 𝑎j, 𝑎j]
= max

𝑗

𝑐j

 𝑎j
=

𝑐𝑗∗

 𝑎𝑗∗

 или 𝑗∗ = 𝑎𝑟𝑔 max
𝑗

𝑐𝑗

𝑎𝑗
                            (3.1)  

Из формулы (3.1) непосредственно получается, что выбранный объект 𝑗∗ соответствует 

оптимистической стратегии (см. определение 2). Аналогично, можно вывести критерии 

выбора объекта 𝑗∗ для пессимистической стратегии (см. определение 3) следующим образом: 

            𝑗∗ = 𝑎𝑟𝑔 max
𝑗

(𝑐𝑗/𝑎j)                                                          (3.2)  

Необходимо заметить, что формулы (3.1) или (3.2) можно принимать как в качестве 

критерия выбора неизвестных  𝑥𝑗 для построения субоптимистического или субпессимис- 

тического решений соответственно. При этом необходимо учитывать случай, в какой 

интервал входит найденный номер 𝑗∗, т.е. 𝑗∗ ∈ [1, … , 𝑛] или 𝑗∗ ∈ [𝑛 + 1, 𝑛 + 2, … , 𝑁].  
Пусть 𝑇 = {1,2, … , 𝑛}  и 𝑅 = {𝑛 + 1, 𝑛 + 2, … , 𝑁}. В начале процесса построения 

решений принимаем 𝑋𝑠𝑜 = (0,0, … ,0) или 𝑋𝑠𝑝 = (0,0, … ,0) и рассмотрим 2 случая: 

1. Пусть 𝑗∗ ∈ 𝑇. Тогда 𝑥𝑗∗
 может принимать значения 0 или 1. Если 𝑎𝑗∗

≤ 𝑏, то 

принимаем 𝑥𝑗∗
≔ 1, 𝑏 ≔ 𝑏 − 𝑎𝑗∗

, 𝑇 ≔ 𝑇\{𝑗∗}, а если 𝑎𝑗∗
> 𝑏, то принимаем 𝑥𝑗∗

≔ 0, 𝑇 ≔

𝑇\{𝑗∗}. 

2. Пусть 𝑗∗ ∈ 𝑇. Тогда неизвестный 𝑥𝑗∗
 должен принимать любые значения из интервала 

[0; 1] (см. ограничение (1.3)). При этом если 𝑎𝑗∗
≤ 𝑏, то принимаем 𝑥𝑗∗

≔ 1 , 𝑏 ≔ 𝑏 − 𝑎𝑗∗
, 

𝑅 ≔ 𝑅\{𝑗∗}, а если 𝑎𝑗∗
> 𝑏, то принимаем 𝑥𝑗∗

≔ 𝑏/𝑎𝑗∗
, 𝑅 ≔ 𝑅\{𝑗∗}, 𝑏 ≔ 𝑏 − 𝑎𝑗∗

𝑥𝑗∗
. Ясно, что в 

этом случае 𝑏 = 0 и на этом процесс решения завершается. 

Для продолжения процесса построения субоптимистического решения 𝑋𝑠𝑜 =
(𝑥1

𝑠𝑜 , 𝑥2
𝑠𝑜, … , 𝑥𝑁

𝑠𝑜) находим номер 𝑗∗ 
 
из критерия 

𝑗∗ = 𝑎𝑟𝑔 max (
𝑗

𝑐𝑗/ 𝑎𝑗). 

Процесс построения субоптимистического решения завершается, если 𝑇 = ∅ и 𝑅 = ∅ , 

т.е. все переменные рассмотрены. 

Отметим, что аналогично вышеуказанному, можно построить субпессимистическое 

решение 𝑋𝑠𝑝 = (𝑥1
𝑠𝑝, 𝑥2

𝑠𝑝, … , 𝑥𝑁
𝑠𝑝) задачи (1.1)-(1.4) используя критерий 

𝑗∗ = 𝑎𝑟𝑔 max
𝑗

(𝑐𝑗/𝑎j). 

Теперь напишем алгоритм вышеуказанного процесса построения субоптимистического 

решения (аналогично можно написать алгоритм построения субпессимистического 

решения). 

Алгоритм 
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Шаг 1.Ввод 𝑁, 𝑛, 𝑎𝑗 , 𝑎𝑗 , 𝑐𝑗, 𝑐𝑗,(𝑗 = 1, 𝑁), 𝑏, 𝑏. 

Шаг 2. Принять 𝑏 ≔ 𝑏, 𝑥𝑗
𝑠𝑜 ≔ 0, и множества 𝑇 = {1,2, … , 𝑛}, 𝑅 = {𝑛 + 1, 𝑛 + 2, … , 𝑁}. 

Шаг 3. Вычислить 𝑘𝑗
𝑠𝑜 = 𝑐𝑗/𝑎𝑗, (𝑗 ∈ 𝑇 ∪ 𝑅). 

Шаг 4. Найти номер 𝑗∗ из критерия  

𝑗∗ = 𝑎𝑟𝑔 max
𝑗∈𝑇∪𝑅

(𝑐𝑗/𝑎𝑗). 

Шаг 5. Если 𝑗∗ ∈ 𝑇 и 𝑎𝑗∗
≤ 𝑏, то принять 𝑥𝑗∗

𝑠𝑜 ≔ 1, 𝑏 ≔ 𝑏 − 𝑎𝑗∗
, 𝑇 ≔ 𝑇\{𝑗∗} и переход к шагу 3. 

Шаг 6. Если 𝑗∗ ∈ 𝑇 и 𝑎𝑗∗
> 𝑏, то принять 𝑥𝑗∗

𝑠𝑜 ≔ 0, 𝑇 ≔ 𝑇\{𝑗∗} и переход к шагу 3. 

Шаг 7.Если 𝑗∗ ∈ 𝑅 и 𝑎𝑗∗
≤ 𝑏, то принять 𝑥𝑗∗

𝑠𝑜 ≔ 1, 𝑏 ≔ 𝑏 − 𝑎𝑗∗
, 𝑅 ≔ 𝑅\{𝑗∗}и переход к шагу 3. 

Шаг 8. Если 𝑗∗ ∈ 𝑅 и 𝑎𝑗∗
> 𝑏 , то принять 𝑥𝑗∗

𝑠𝑜 ≔ (𝑏/𝑎𝑗∗
), 𝑅 ≔ 𝑅\{𝑗∗}. 

Шаг 9. Вычислить 𝑓𝑠𝑜 ≔ ∑ 𝑐𝑗𝑥𝑗
𝑠𝑜𝑁

𝑗=1 . 

Шаг 10.Печать 𝑓𝑠𝑜 , 𝑥𝑠𝑜 = (𝑥1
𝑠𝑜 , 𝑥2

𝑠𝑜 , … , 𝑥𝑁
𝑠𝑜). 

Шаг 11. Конец. 

Отметим, что в книге [16, стр.15-17] введены понятия операций над интервалами сле- 

дующим образом. Пусть заданы интервалы 𝐴 = [𝑎1, 𝑎2] и 𝐵 = [𝑏1, 𝑏2] . 
1. 𝐴 + 𝐵 = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2], 
2. 𝐴 − 𝐵 = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1] = 𝐴 + [−1, −1] ∗ 𝐵, 

3. 𝐴 ∗ 𝐵 = [min{𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2} , 𝑚𝑎𝑥{𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2}], (3.3) 

4. 𝐴: 𝐵 = [𝑎1, 𝑎2] ∗ [1/𝑏2, 1/𝑏1].                                                           (3.4) 

Отсюда видно, что для нахождения отношения интервалов нужно выполнить операции: 

𝐴: 𝐵 = [𝑎1, 𝑎2] ∗ [1/𝑏2, 1/𝑏1] = [ min {
𝑎1

𝑏 2
,

𝑎1

𝑏1
,

𝑎2

𝑏 2
,

𝑎2

𝑏 1
} , 𝑚𝑎𝑥 {

𝑎1

𝑏 2
,

𝑎1

𝑏1
,

𝑎2

𝑏 2
,

𝑎2

𝑏 1
} ]. 

Теорема 1. Пусть заданы интервалы 𝐴 = [𝑎1, 𝑎2] и 𝐵 = [𝑏1, 𝑏2]. Если 0 < 𝑎1 ≤ 𝑎2, 0 <
𝑏1 ≤ 𝑏2, то min(𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2) = 𝑎1𝑏1, max(𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2) = 𝑎2𝑏2. 

Доказательство. По условию 𝑎1 ≤ 𝑎2 и 𝑏1 ≤ 𝑏2. Поскольку 𝑏1 > 0 и 𝑏2 > 0 получим, 

что 𝑎1𝑏1 ≤ 𝑎2𝑏1 и 𝑎1𝑏1 ≤ 𝑎1𝑏2. С другой стороны умножая следующую систему неравенств 

по частям {
𝑎1 ≤ 𝑎2

𝑏1 ≤ 𝑏2
, получаем 𝑎1𝑏1 ≤ 𝑎2𝑏2. Следовательно, min(𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2) = 𝑎1𝑏1 

Аналогичным образом доказывается, что max(𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2) = 𝑎2𝑏2. 

Теорема 1 доказана. 

Теорема 2. Пусть заданы интервалы 𝐴 = [𝑎1, 𝑎2] и 𝐵 = [𝑏1, 𝑏2]. Если 0 < 𝑎1 ≤ 𝑎2, 0 <
𝑏1 ≤ 𝑏2, то min(𝑎1/𝑏2, 𝑎1/𝑏1, 𝑎2/𝑏2, 𝑎2/𝑏1) = 𝑎1/𝑏2, max(𝑎1/𝑏2, 𝑎1/𝑏1, 𝑎2/𝑏2, 𝑎2/𝑏1) =  𝑎2𝑏2. 

Таким образом 𝐴: 𝐵 = [𝑎1/𝑏2, 𝑎2/𝑏1]. 
Доказательство проводится аналогично доказательству теоремы 2. 

Доказанные нами теоремы 1 и 2 показывают, что произведение и отношение двух 

интервалов, указанные в (3.3)-(3.4) можно получить используя меньших арифметических и 

логических операций. 

Преимущества этих теорем от приведённых в книге [16, с.16-17] заключается в том, что 

один и тот же результат можно получить, исходя из вышеуказанной оптимистической или 

пессимистической стратегии, проведя меньшее число операций. 

4. Результаты вычислительного эксперимента. Разработанные в данной работе 

алгоритмы построения субоптимистического и субпессимистического решений 

запрограммированы на языке Паскаль. Для выявления качества разработанных алгоритмов 

были проведены многочисленные эксперименты над задачами различной размерности. 

Коэффициенты этих задач выбраны как псевдослучайные двухзначные или 

трёхзначные числа следующим образом: 
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I. 1 ≤ 𝑎𝑗 ≤ 99, 1 ≤ 𝑎𝑗 ≤ 99, 1 ≤ 𝑐𝑗 ≤ 99, 1 ≤ 𝑐𝑗 ≤ 99. 

II. 1 ≤ 𝑎𝑗 ≤ 999, 1 ≤ 𝑎𝑗 ≤ 999, 1 ≤ 𝑐𝑗 ≤ 999, 1 ≤ 𝑐𝑗 ≤ 999. 

𝑏 ≔ [
1

3
∑ 𝑎𝑗

𝑁

𝑗=1

], 𝑏 ≔ [
1

3
∑ 𝑎𝑗

𝑁

𝑗=1

]. 

Результаты вычислительных экспериментов представлены в следующих таблицах (для 

каждой размерности были решены 5 различных задач). 

Таблица 1. 

Субоптимистические и субпессимистические значения и погрешности для задач с 

двухзначными коэффициентами. (𝑵 = 𝟏𝟎𝟎; 𝒏 = 𝟔𝟎)  

№ 𝑏𝑎 𝑏𝑦 𝑓𝑞
𝑠𝑜 𝑓𝑦

𝑜 𝑓𝑎
𝑜 𝛿𝑜 𝑓𝑞

𝑠𝑝
 𝑓𝑦

𝑝
 𝑓𝑎

𝑝
 𝛿𝑝 

1 1810 2510 5181.47 5183.67 5163.00 0.004 3055.68 3055.68 3049.00 0.002 

2 1689 2397 5381.86 5390.33 5318.00 0.013 3123.05 3123.05 3107.00 0.005 

3 1551 2259 5479.95 5479.95 5428.00 0.009 3303.62 3309.98 3297.00 0.004 

4 1645 2374 5325.75 5326.19 5322.00 0.001 2912.25 2912.58 2905.00 0.003 

5 1568 2293 5252.20 5252.20 5221.00 0.006 2884.60 2885.54 2853.00 0.011 

 

Таблица 2. 

Субоптимистические и субпессимистические значения и погрешности для задач с 

двухзначными коэффициентами. (𝑵 = 𝟐𝟎𝟎; 𝒏 = 𝟏𝟎𝟎) 
 

 

Таблица 3. 

Субоптимистические и субпессимистические значения и погрешности для задач с 

двухзначными коэффициентами. (𝑵 = 𝟓𝟎𝟎; 𝒏 = 𝟑𝟎𝟎) 

 

№ 𝑏𝑎 𝑏𝑦 𝑓𝑞
𝑠𝑜 𝑓𝑦

𝑜 𝑓𝑎
𝑜 𝛿𝑜 𝑓𝑞

𝑠𝑝
 𝑓𝑦

𝑝
 𝑓𝑎

𝑝
 𝛿𝑝 

1 8590 12769 25692.00 25692.00 25692.00 0.000 14573.45 14573.80 14568.00 0.000 

2 8134 11791 26472.52 26472.52 26467.00 0.000 15146.26 15146.26 15062.00 0.006 

3 8544 11978 25987.67 25987.67 25967.00 0.001 15604.28 15604.45 15592.00 0.001 

4 8164 11466 25582.41 25582.41 25525.00 0.002 15189.27 15189.27 15166.00 0.002 

5 8663 11979 25634.69 25634.69 25572.00 0.002 15267.87 15262.87 15248. 0.001 

 

Таблица 4.  

Субоптимистические и субпессимистические значения и погрешности для задач с 

двухзначными коэффициентами. (𝑵 = 𝟏𝟎𝟎𝟎, 𝒏 = 𝟔𝟎𝟎)
 
 

№ 𝑏𝑎 𝑏𝑦 𝑓𝑞
𝑠𝑜 𝑓𝑦

𝑜 𝑓𝑎
𝑜 𝛿𝑜 𝑓𝑞

𝑠𝑝
 𝑓𝑦

𝑝
 𝑓𝑎

𝑝
 𝛿𝑝 

1 16427 23611 52641.20 52641.62 52577.00 0.001 30709.11 30709.29 30704.00 0.000 

2 16472 234.86 51566.17 51566.40 51537.00 0.001 29799.20 29799.56 29783.00 0.001 

№ 𝑏𝑎 𝑏𝑦 𝑓𝑞
𝑠𝑜 𝑓𝑦

𝑜 𝑓𝑎
𝑜 𝛿𝑜 𝑓𝑞

𝑠𝑝
 𝑓𝑦

𝑝
 𝑓𝑎

𝑝
 𝛿𝑝 

1 3372 4931 10294.15 10294.15 10293.00 0.000 5881.71 5881.79 5868.00 0.002 

2 3255 4729 10914.90 10915.32 10889.00 0.002 6168.35 6168.46 6148.00 0.003 

3 3410 4792 10041.45 10041.48 10012.00 0.003 5961.59 5961.59 5953.00 0.001 

4 3063 4674 11078.38 11078.38 11047.00 0.003 6219.92 6219.92 6184.00 0.006 

5 3279 4673 9997.60 9997.60 9958.00 0.004 5818.02 5818.02 5797.00 0.004 
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3 16185 23472 52086.21 52086.22 52073.00 0.000 29886.71 29886.74 29883.00 0.000 

4 16691 23497 51617.37 51617.51 51612.00 0.000 30441.71 30441.71 30438.00 0.000 

5 16612 23663 51559.21 51559.33 51496.00 0.001 30323.00 30323.00 30323.00 0.000 

 

 

Таблица 5. 

Субоптимистические и субпессимистические значения и погрешности для задач с 

трёхзначными коэффициентами. (𝑵 = 𝟏𝟎𝟎; 𝒏 = 𝟔𝟎) 

 

№ 𝑏𝑎 𝑏𝑦 𝑓𝑞
𝑠𝑜 𝑓𝑦

𝑜 𝑓𝑎
𝑜 𝛿𝑜 𝑓𝑞

𝑠𝑝
 𝑓𝑦

𝑝
 𝑓𝑎

𝑝
 𝛿𝑝 

1 18254 23510 47257.91 47257.91 47061.00 0.004 30879.71 30879.71 30686.00 0.006 

2 17039 22477 49321.81 49322.63 49288.00 0.001 31475.45 31475.45 31218.00 0.008 

3 15667 21342 50280.28 50284.72 49602.00 0.014 33541.81 33541.81 33431.00 0.003 

4 16607 22368 48663.32 48682.09 48584.00 0.002 29642.26 29655.27 29594.00 0.002 

5 15811 21738 48536.45 48547.12 48121.00 0.009 29199.71 29199.71 28738.00 0.016 

 

Таблица 6. 

Субоптимистические и субпессимистические значения и погрешности для задач с 

трёхзначными коэффициентами. (𝑵 = 𝟐𝟎𝟎; 𝒏 = 𝟏𝟎𝟎) 

 

№ 𝑏𝑎 𝑏𝑦 𝑓𝑞
𝑠𝑜 𝑓𝑦

𝑜 𝑓𝑎
𝑜 𝛿𝑜 𝑓𝑞

𝑠𝑝
 𝑓𝑦

𝑝
 𝑓𝑎

𝑝
 𝛿𝑝 

1 34047 46811 94501.06 94506.45 94383.00 0.001 59896.98 59897.36 59814.00 0.001 

2 32838 44466 100312.86 100316.26 100043.00 0.003 62313.81 62313.81 62101.00 0.003 

3 34417 44848 90404.18 90426.74 89981.00 0.005 60218.83 60218.83 59930.00 0.005 

4 30930 44479 101255.96 101259.45 100762.00 0.005 62569.80 62575.33 62077.00 0.008 

5 33073 44161 90955.25 90956.56 90774.00 0.002 59095.11 59095.28 59090.00 0.000 

 

Таблица 7. 

Субоптимистические и субпессимистические значения и погрешности для задач с 

трёхзначными коэффициентами. (𝑵 = 𝟓𝟎𝟎, 𝒏 = 𝟑𝟎𝟎) 

 

№ 𝑏𝑎 𝑏𝑦 𝑓𝑞
𝑠𝑜 𝑓𝑦

𝑜 𝑓𝑎
𝑜 𝛿𝑜 𝑓𝑞

𝑠𝑝
 𝑓𝑦

𝑝
 𝑓𝑎

𝑝
 𝛿𝑝 

1 86601 114839 235962.93 235962.93 235660.00 0.001 147113.88 147126.67 147086.00 0.000 

2 82101 111096 241802.91 241803.25 241576.00 0.001 152593.74 152596.21 152092.00 0.003 

3 86207 112714 236403.49 236403.49 236357.00 0.000 158329.47 158335.78 158227.00 0.001 

4 82365 107931 232834.45 234834.45 232575.00 0.001 153734.09 153734.09 153065.00 0.004 

5 87320 112603 234971.87 234972.11 234932.00 0.000 154379.89 154379.89 154034.00 0.002 

 

Таблица 8. 

Субоптимистические и субпессимистические значения и погрешности для задач с 

трёхзначными коэффициентами. (𝑵 = 𝟏𝟎𝟎𝟎, 𝒏 = 𝟔𝟎𝟎)  

 

№ 𝑏𝑎 𝑏𝑦 𝑓𝑞
𝑠𝑜 𝑓𝑦

𝑜 𝑓𝑎
𝑜 𝛿𝑜 𝑓𝑞

𝑠𝑝
 𝑓𝑦

𝑝
 𝑓𝑎

𝑝
 𝛿𝑝 

1 165766 222873 478164.49 478165.30 477364.00 0.002 311334.32 311334.40 311263.00 0.000 

2 166203 221628 471819.15 471819.41 471688.00 0.000 302085.10 302085.89 302071.00 0.000 

3 163288 221423 476424.13 476424.13 476369.00 0.000 302904.46 302912.84 302851.00 0.000 
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4 168373 221278 469925.50 469925.50 469765.00 0.000 308273.61 308273.82 308247.00 0.000 

5 167589 222705 468826.38 468826.38 468281.00 0.001 307221.73 307221.73 307219.00 0.000 

 

 

 

 

В таблицах приняты следующие обозначения: 

𝑁   число всех переменных,  

𝑛  число Булевых переменных,  

𝑏𝑎, 𝑏𝑦  нижняя и верхняя границы интервала в ограничении (1.2), 

𝑓𝑞
𝑠𝑜, 𝑓𝑞

𝑠𝑝
  субоптимистические и субпессимистические значения функционала 

частично-Булевой задачи (1.1)-(1.4) соответственно, 

𝑓𝑦
𝑜 , 𝑓𝑎

𝑜 , 𝑓𝑦
𝑝, 𝑓𝑎

𝑝  верхняя и нижняя границы оптимистического и пессимистического 

значений функционала задачи (1.1)-(1.4) соответственно, 

𝛿𝑜 , 𝛿𝑝  относительные погрешности субоптимистического и субпессимистического 

значений функционала задачи (1.1)-(1.4) от оптимистического и пессимистического 

соответственно, т.е. 𝛿𝑜 = (𝑓𝑦
𝑜 − 𝑓𝑞

𝑜/𝑓𝑦
𝑜) , 𝛿𝑝 = (𝑓𝑦

𝑝 − 𝑓𝑞
𝑝/𝑓𝑦

𝑝). 

5. Выводы. Из вышеуказанных таблиц видно, что субоптимистические и субпессимис- 

тические значения задачи (1.1)-(1.4), полученные методами, разработанными в данной 

работе, нестрого отличаются от оптимистического и пессимистического соответственно. 

Относительные погрешности соответствующих значений не превышают 1,4 % среди 

решённых случайных 40 задач. А это очень важно для реальных практических задач.  
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UOT 519.852.6 

 

K.Ş. Məmmədov, N.O. Məmmədli 

Verilənləri intervallar olan qismən Bul dəyişənli çanta məsələsində suboptimist və subpessimist həllərin 

qurulması üsulları 

İşdə verilənləri intervallar olan qismən Bul dəyişənli çanta məsələsi üçün optimist, pessimist, suboptimist və 

subpessimist həll anlayışları verilmişdir. Bu məsələ üçün suboptimist və subpessimist  həllərin qurulması üsulları 

işlənmişdir. Bu üsullar baxılan məsələnin müəyyən iqtisadi interpretasiyasına əsaslanır. Müxtəlif böyük ölçülü və 

təsadüfi əmsalları olan məsələlər üzərində aparılmış çoxsaylı hesabalama eksperimentləri təklif olunmuş üsulların 

kifayət qədər effektiv olmasını bir daha göstərmişdir. 
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Methods of constructing suboptimistic and subpessimistic solutions of mixed-Boolean knapsack problem with 

interval data 

The authors introduce the concepts of optimistic, pessimistic, suboptimistic and subpessimistic solutions of 

mixed-Boolean knapsack problem with interval data. For this problem, methods of constructing of suboptimistic and 

subpessimistic solutions are developed. These methods are based on some economic interpretation of considered prob-

lem. Computational experiments for different large-scale problems with random coefficients show high efficiency of 

developed methods again. 
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