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ГАЗА И НЕКОТОРЫЕ РЕЗУЛЬТАТЫ ЕГО НЕПРЕРЫВНОГО ГРУППОВОГО 

АНАЛИЗА (часть III) 
 

Этой работой мы завершаем цикл из трех статьей, посвященных групповому анализу нового уравнения 

теплопроводности, выведенного нами в I части работы на основе известных термодинамических соображений. 

Заключительная III часть работы качественно отличается от предыдущих частей тем, что здесь исследуемое 

уравнение допускает бесконечномерную алгебру Ли. Установлены инвариантные решения.  
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1. Введение. Настоящая работа является непосредственным продолжением статей [1, 2]. 

В [1, с.120, 121] для математического описания поведения идеального политропного газа, 

участвующего в одномерном термодинамическом процессе, приведено термодинамическое 

обоснование правомерности следующего нелинейного уравнения теплопроводности: 

                                                       𝑐𝑎𝑇𝑏(𝑟)𝑇𝑡 = 𝑘(𝑇𝜎𝑇𝑥)𝑥 ,                                                    (1.1) 

где 𝑇 = 𝑇(𝑡, 𝑥) – температура, 𝑡 − время, 𝑥 − пространственная координата, 𝑐 − удельная мас-

совая теплоемкость, 𝜎 > 0 − постоянная величина, 𝑎 = (𝑅/𝑎0)𝑏(𝑟),  𝑅 − удельная газовая 

постоянная, 𝑎0 − постоянная величина (задается в уравнении политропы для идеального газа), 

𝑏(𝑟) = 1 (𝑟 − 1)⁄ , 𝑟 ≠ 1 − показатель политропы, 𝜎 > 0 − постоянная величина и 𝑘 > 0 −
 коэффициент (об уточнении вида уравнения (1.1) см. примечание 1). 

Среди перечисленных выше величин безразмерными являются 𝑟 и 𝜎, а сведения о 

физических размерностях остальных величин перечислены в [1, с.121, 122]. Предполагается, 

что 𝑡 > 0, 𝑥 > 0, 𝑇 > 0.  
Отметим, что в статье [1, с.131] описаны физические условия протекания процесса 

нагрева, которые могли бы обеспечить приемлемую адекватность уравнения (1.1). В 

примечании 2 приведено дополнительное физическое условие, способствующее увеличению 

адекватности исследуемого уравнения.  

При групповом анализе [3-6] математической модели (1.1), которое было начато в [1, 

с.122-131] сразу же после его вывода и продолжено в [2, с.121-133], мы, также, как и в 

предыдущих работах исходим из допущения о том, что все встречающиеся в тексте размерные 

величины представлены в относительных единицах, т. е. в безразмерном виде. Важно 

отметить, что при этом для краткости текста сохранены без изменений их исходные обозначе-

ния. 

Согласно [1, с.122], соответствующие уравнению (1.1) оптимальные системы неподоб-

ных одномерных подалгебр, различаются в следующих трех случаях: 

Случай 1: 𝑟 ≠ (𝜎 + 1)/𝜎 и 𝑟 ≠ 3(𝜎 + 1)/(3𝜎 + 4) или то же самое  

                 𝑏(𝑟) ≠ 𝜎 и 𝑏(𝑟) ≠ −(3𝜎 + 4); 
Случай 2: 𝑟 = 3(𝜎 + 1) (3𝜎 + 4)⁄ или то же самое 𝑏(𝑟) = − (3𝜎 + 4); 
Случай 3: 𝑟 = (𝜎 + 1)/𝜎 или то же самое 𝑏(𝑟) = 𝜎. 
В [1, 2] нам удалось найти некоторые точные инвариантные решения нелинейного 

уравнения теплопроводности (1.1) для случаев 1 и 2 соответственно. Теперь наша цель 

заключается в нахождении точных инвариантных решений этого уравнения в случае 3. В этом 

случае уравнение (1.1) очевидно примет следующий вид:   
                                                     𝑐𝑎𝑇𝜎𝑇𝑡 = 𝑘(𝑇𝜎𝑇𝑥)𝑥 .                                                 (1.2) 
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Известно, что в тех случаях, когда исследуемое нелинейное дифференциальное уравне-

ние допускает бесконечномерную алгебру Ли часто удается свести это уравнение невырож-

денным преобразованием к линейному уравнению. Для рассматриваемого уравнения (1.2) 

нужное для этого преобразование нашлось быстро. Оно имеет вид: 

𝑢 = 𝑇𝜎+1,                                                                 (1.3) 

с учетом которого уравнение (1.2) преобразуется к следующему эквивалентному уравнению 

𝑐𝑎𝑢𝑡 = 𝑘𝑢𝑥𝑥.                                                               (1.4) 

Переход от решений уравнения (1.4) к решениям исходного уравнения (1.2), естественно, 

осуществляется посредством преобразования обратного к преобразованию (1.3).  
Замечание 1.1. Важно подчеркнуть, что уравнение (1.4) – хорошо известное линейное 

уравнение теплопроводности. Поэтому с самого начала мы могли надеяться, что найденные 

нами частные точные решения либо могут совпадать с уже известными такими решениями 

этого уравнения (эти решения приведены, например, в [7, с.50]), либо же могут быть выведены 

из них с помощью соответствующего применения принципа линейной суперпозиции. Но, 

ясно, что даже в этом случае новизна наших результатов не теряется, поскольку мы дополни-

тельно исследовали вопросы инвариантности найденных решений относительно оптимальной 

системы допускаемых алгебр. Кроме того, проведенный нами самостоятельный поиск реше-

ний уравнения (1.4), т.е. поиск без опоры на результаты [7], позволил обнаружить один имею-

щийся изъян, а затем и внести уточнения в две формулы из [7, с.50], описывающие счетное 

множество точных решений этого уравнения. 

В разделе 4 с помощью образующих операторов подалгебр (входящих в оптимальную 

систему подалгебр допускаемых уравнением (1.2)) мы попытались, как и в предыдущих двух 

частях, найти точные инвариантные решения (ранга 1) уравнения теплопроводности (1.2). С 

этой целью, сначала в установленных новых инвариантных переменных были составлены 

обыкновенные дифференциальные уравнения, в которые редуцируются уравнение (1.2), а 

затем найдены решения редуцированных уравнений и, наконец, путем перехода к исходным 

переменным из найденных решений были выведены искомые точные инвариантные решения 

уравнения (1.2). Согласно постановке задачи (см. раздел 2) здесь, мы, также как в [2, с.121-

133] будем искать такие точные решений этого уравнения, которые имеют конечный вид. В 

разделе 4 использованы те подалгебры, для которых удалось найти точные инвариантные 

решения в конечном виде. В разделе 5 реализовано обобщение некоторых формул точных 

решений уравнения (1.2) полученных в разделе 4. 

Ниже 𝑁 – множество всех натуральных чисел, 𝑅1 – множество всех действительных 

чисел, символом 〈𝑋, 𝑌, 𝑍, … 〉 обозначена алгебра Ли натянутая на инфинитезимальные опера-

торы 𝑋, 𝑌, 𝑍,..., символ 𝑋𝑗(𝑘) означает, что оператор 𝑋𝑗 = 𝑋𝑗(𝑘) принадлежит списку (5.k), 

который был получен для случая k и приведен в I части работы, 𝑘 = 1, 3̅̅ ̅̅̅ [1, с.123]. Буква 𝜂 

используется нами при записи характеристических уравнений, где она обозначает искомую 

инвариантную переменную.  

Замечание 1.2. Важно отметить, что далее в тексте говоря о том, что «аналог найденного 

нами решения имеется в [7, с.50]», мы подразумеваем, что это решение, если даже не приведе-

но в [7, с.50], то может быть выведено из соответствующих решений, приведенных там, путем 

применения принципа линейной суперпозиции.   
2. Постановка задачи. В работе требуется найти точные инвариантные решения уравне-

ния теплопроводности (1.2), которые имеют конечный вид (т.е. могут быть выражены без ис-

пользования рядов или специальных функций). 

3. Необходимые сведения. Исследуемый случай 3 качественно отличается от первых 

двух случаев тем, что в этом случае уравнение (1.2) допускает бесконечномерную алгебру 



Transaction of Azerbaijan National Academy of Sciences, Series of Physical-Technical and 

Mathematical Sciences: Informatics and Control Problems, Vol. XXXVI, No.6, 2016 

www.icp.az/2016/6-02.pdf 

 

16 
 

𝐿6⨁𝐿∞. Согласно [1, с.123] базисные операторы подалгебры 𝐿6 = 〈𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6〉 
следующие 

𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑥, 𝑋3 = 𝑇𝜕𝑇, 𝑋4 = 2𝑡𝜕𝑡 + 𝑥𝜕𝑥, 

𝑋5 = −
2𝑘(𝜎+1)

𝑐𝑎
𝑡𝜕𝑥 + 𝑥𝑇𝜕𝑇, 𝑋6 = −

4𝑘(𝜎+1)

𝑐𝑎
(𝑡2𝜕𝑡 + 𝑥𝑡𝜕𝑥) + (𝑥2 +

2𝑘

𝑐𝑎
𝑡) 𝑇𝜕𝑇,          (3.1) 

а базисы бесконечномерной подалгебры 𝐿∞ имеют следующий вид: 𝑋𝜑 = 𝜑𝜕𝑇, где 𝜑 = 𝜑(𝑡, 𝑥) 

– любое ненулевое решение линейного уравнения теплопроводности: 𝑐𝑎𝜑𝑡 = 𝑘𝜑𝑥𝑥. 

Замечание 3.1. Сам факт сводимости уравнения теплопроводности (1.2) к известному 

линейному уравнению (1.4) указывает на то, что между базисными операторами допускаемых 

этими уравнениями алгебр Ли не должно быть существенной разницы. Действительно, в этом 

можно убедиться сравнивая базисные операторы из (3.1) с соответствующими базисными 

операторами допускаемых уравнением (1.4) подалгебр [5, с.165].  

В соответствии с [1, с.126] оптимальная система подалгебр алгебры 𝐿6 состоит из 

подалгебр следующего вида 
〈𝑋1〉, 〈𝑋2〉, 〈𝑋1 + 𝑋2〉, 〈𝑋3〉, 〈𝑋1 + 𝑋3〉, 〈−𝑋1 + 𝑋3〉, 〈𝛼𝑋3 + 𝑋4〉, 〈𝑋5〉, 〈𝑋1 + 𝑋5〉, 〈−𝑋1 + 𝑋5〉,  

〈𝑋3 + 𝛼𝑋4 + 𝑋5〉, 〈−𝑋3 + 𝛼𝑋4 + 𝑋5〉, 〈𝑋1 + 𝛼𝑋3 + 𝑋6〉, 〈−𝑋1 + 𝛼𝑋3 + 𝑋6〉, 〈𝛼𝑋2 + 𝑋6〉,  
〈𝛼𝑋3 + 𝑋6〉, 𝐿∞ ∀𝛼 ∈ 𝑅1,                                                             (3.2)    

где 𝑋𝑖 = 𝑋𝑖(3), 𝑖 = 1, 6̅̅ ̅̅̅. 

4. Составление и поиск решений редуцированных уравнений в случае 3. В [2, с.122] 

сравнивая списки подалгебр (5.1)-(5.3) из [1, с.123], мы заметили, что подалгебры 〈𝑋1〉, 〈𝑋2〉,
〈𝑋1 + 𝑋2〉 являются общими для всех случаев 1-3. Это могло бы означать, что те точные 

решения найденные в [1], а конкретно решения (9.1),(9.4),(9.6),(9.9) в [1], являющиеся инва-

риантами соответствующих образующих этих трех подалгебр, сохранят силу и в случае 3, если 

только учет соответствующей этим случаям конкретной зависимости между величинами 𝑟 и 𝜎 

не приводит к каким-либо противоречиям. Например, формула точного решения (9.6) из [1, 

c.127], справедливая в случаях 1 и 2: 

𝑇(𝑡, 𝑥) = (𝐶 +
𝑐𝑎(𝑏(𝑟)−𝜎)

𝑘(𝑏(𝑟)+1)
(𝑥 − 𝑡))

1 (𝜎−𝑏(𝑟))⁄

 ∀𝐶 ∈ 𝑅1, 

не остается в силе в случае 3, поскольку невозможно в ней учитывать зависимость 𝑏(𝑟) = 𝜎, 
приводящей к недопустимой операции деления на нуль. По той же причине нельзя использо-

вать в рассматриваемом случае формулы точных решений (9.12), (9.19) из [1].  

При каждом фиксированном значении параметра 𝛼 ∈ 𝑅1 список (3.2) состоит из 16 

одномерных подалгебр. Рассмотрим их, начиная с учетом вышесказанного с третьей по списку 

подалгебры 〈𝑋1 + 𝑋2〉, исключив из рассмотрения также подалгебры 〈𝑋3(3)〉 и 𝐿∞. Так как эти 

подалгебры подтверждают возможность применения принципа линейной суперпозиции, а 

конкретно применительно к рассматриваемому случаю, возможность сведения уравнения (1.2) 

к линейному уравнению теплопроводности (1.4). Кроме того, мы исключили из списка (3.2) 

подалгебры 〈𝑋1(3) + 𝑋5(3)〉, 〈−𝑋1(3) + 𝑋5(3)〉, а также все подалгебры из этого списка, 

порождающие операторы которых содержат инфинитезимальный оператор 𝑋6(3) (о причине 

этих исключений см. примечание 3). С учетом сказанного, мы ниже ограничимся рассмотрени-

ем следующих подалгебр из списка (3.2): 
〈𝑋1 + 𝑋2〉, 〈𝑋1 + 𝑋3〉, 〈−𝑋1 + 𝑋3〉, 〈𝛼𝑋3 + 𝑋4〉, 〈𝑋5〉, 〈𝑋1 + 𝑋5〉, 〈−𝑋1 + 𝑋5〉,  

〈𝑋3 + 𝛼𝑋4 + 𝑋5〉, 〈−𝑋3 + 𝛼𝑋4 + 𝑋5〉, ∀𝛼 ∈ 𝑅1, 

где 𝑋𝑖 = 𝑋𝑖(3), 𝑖 = 1, 5̅̅ ̅̅̅. 

4.1. Подалгебра 〈𝑿𝟏(𝟑) + 𝑿𝟐(𝟑)〉. Как видно из списка операторов (3.1), порождающий 

эту подалгебру инфинитезимальный оператор имеет следующий вид: 𝑋1(3) + 𝑋2(3) = 𝜕𝑡 +
𝜕𝑥. Одним из инвариантов этого оператора, очевидно, является функция 𝑧 = 𝑇, а второй 
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инвариант 𝑦 найдем путем решения характеристического уравнения вида: 𝑑𝑡 = 𝑑𝑥, соответ-

ствующего дифференциальному уравнению в частных производных (𝑋1 + 𝑋2)𝜂 = 0. Имеем 

𝑦 = 𝑥 − 𝑡. Откуда следует, что искомое решение в инвариантных переменных будет иметь 

вид: 𝑧 = 𝑤(𝑦), а в исходных переменных: 

𝑇 = 𝑤(𝑥 − 𝑡), 

где 𝑤 – неизвестная пока функция.  

После учета очевидных соотношений 𝑦𝑥 = 1, 𝑦𝑡 = −1, 𝑇𝑡 = −𝑧𝑦 и 𝑇𝑥 = 𝑧𝑦, уравнение 

(1.2) редуцируется к следующему обыкновенному нелинейному дифференциальному уравне-

нию: 

−𝑐𝑎𝑧𝜎𝑧𝑦 = 𝑘(𝑧𝜎𝑧𝑦)
𝑦

, 

которое после применения преобразования 𝜒 = (𝑧𝜎+1)𝑦, трансформируется к линейному диф-

ференциальному уравнению вида 

−𝑐𝑎𝜒 = 𝑘𝜒𝑦. 

После его интегрирования (дважды с учетом преобразования для 𝜒) и перехода к исход-

ным переменным получим решение уравнения (1.2) в следующем виде 

𝑇(𝑡, 𝑥) = (𝐶2 − 𝐶1
𝑘

𝑐𝑎
𝑒−

𝑐𝑎

𝑘
(𝑥−𝑡)

)
1 (𝜎+1)⁄

,                                  (4.1)  
  

где 𝐶1 > 0, 𝐶2 – произвольные вещественные постоянные.  
Замечание 4.1. В формуле (4.1) не представляется целесообразным заменить одним 

постоянным коэффициент 𝐶1
𝑘

𝑐𝑎
, состоящий из произведения двух постоянных множителей, 

поскольку постоянная величина  
𝑘

𝑐𝑎
 в отличие от первого постоянного множителя 𝐶1 является 

размерной величиной (естественно, что сказанное важно при учете физических размерностей 

рассматриваемых величин).  
Путем непосредственной проверки можно убедиться в том, что точное решение (4.1) 

уравнения (1.2) является инвариантном оператора 𝑋1 + 𝑋2 = 𝜕𝑡 + 𝜕𝑥. Это решение 

качественно отличается от приведенного выше точного решения, полученного для случая 1 и 

являвшимся инвариантом того же инфинитезимального оператора 𝜕𝑡 + 𝜕𝑥.  

Если в соответствии с (1.3) возвести обе стороны равенства (4.1) на степень 𝜎 + 1, то  

полученная формула для 𝑇𝜎+1 выразит точное решение линейного уравнения (1.4). Аналог 

полученного таким путем решения имеется и в [7, с.50] (см. замечание 1.2).  

Теперь мы узнали, что как решение (4.1), так и решение уравнения (1.4), выражаемое 

формулой для 𝑢 = 𝑇𝜎+1 являются инвариантами оператора 𝜕𝑡 + 𝜕𝑥 (поскольку любая гладкая 

функция от инварианта, а следовательно, и степень инварианта, является инвариантом). 

4.2. Подалгебра 〈𝑿𝟏(𝟑) + 𝑿𝟑(𝟑)〉. В соответствии с (3.1) порождающий эту подалгебру 

оператор имеет следующий вид: 𝑋1(3) + 𝑋3(3) = 𝜕𝑡 + 𝑇𝜕𝑇 . Одним из инвариантов этого 

оператора, очевидно, что является функция 𝑦 = 𝑥. Для определения второго инварианта решив 

характеристическое уравнение 𝑑𝑡 = 𝑑𝑇/𝑇 (для дифференциального уравнения в частных 

производных (𝑋1(3) + 𝑋3(3))𝑧 = 0), находим, что 𝑧 = 𝑒𝑡𝑇−1. Так что искомое точное 

решение будет иметь вид 𝑧 = 𝑤(𝑦), а в исходных переменных: 

𝑇 = 𝑒𝑡𝑤−1(𝑥), 
где 𝑤 − искомая функция.  

Принимая в (1.2) к вниманию равенства 𝑦𝑡 = 0, 𝑦𝑥 = 1, 𝑇𝑡 = 𝑒𝑡𝑧−1, 𝑇𝑥 = −𝑒𝑡𝑧−2𝑧𝑦 и 

преобразование 𝜒 = 𝑧−(𝜎+1) приходим к следующему редуцированному уравнению 

𝜒𝑦𝑦 = 𝛾2𝜒.                                                                  (4.2) 
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Здесь 

𝛾 = (𝑐𝑎(𝜎 + 1) 𝑘⁄ )1 2⁄ .                                                       (4.3) 

Решение обыкновенного дифференциального уравнения (4.2) согласно [8, с.365] имеет 

вид 

𝜒 = 𝐶1𝑐ℎ(𝛾𝑦) + 𝐶2𝑠ℎ(𝛾𝑦), 

откуда возвращаясь к исходным переменным получим точное решение уравнения (1.2): 

𝑇(𝑡, 𝑥) = 𝑒𝑡(𝐶1𝑐ℎ(𝛾𝑥) + 𝐶2𝑠ℎ(𝛾𝑥))
1 (𝜎+1)⁄

,                                   (4.4) 

где 𝐶1 ∈ 𝑅1 и 𝐶2 ∈ 𝑅1 – произвольные постоянные интегрирования, а коэффициент 𝛾 

определяется по формуле (4.3). 

Решение (4.4) уравнения (1.2) является инвариантном инфинитезимального оператора 

𝑋1(3) + 𝑋3(3).  
Возведя в соответствии с (1.3) обе стороны равенства (4.4) на степень 𝜎 + 1, получим 

𝑢(𝑡, 𝑥) = 𝑒(𝜎+1)𝑡(𝐶1𝑐ℎ(𝛾𝑥) + 𝐶2𝑠ℎ(𝛾𝑥)),                                     (4.5) 

где 𝐶1 ∈ 𝑅1 и 𝐶2 ∈ 𝑅1 – произвольные постоянные, а 𝛾 определяется по формуле (4.3). 

Точное решение (4.5) линейного уравнения теплопроводности (1.4) имеет аналог в [7, 

с.50] (см. замечание 1.2) и теперь мы узнали, что не только решение (4.4), но и решение (4.5) 

являются инвариантами инфинитезимального оператора 𝜕𝑡 + 𝑇𝜕𝑇. 

4.3. Подалгебра 〈−𝑿𝟏(𝟑) + 𝑿𝟑(𝟑)〉. Порождающий эту подалгебру оператор −𝑋1(3) +
𝑋3(3) отличается от предыдущего инфинитезимального оператора одним знаком: −𝑋1(3) +
𝑋3(3) = −𝜕𝑡 + 𝑇𝜕𝑇 . Действуя по аналогии с предыдущим случаем получим точное решение 

уравнения (1.2) в следующем виде: 

𝑇(𝑡, 𝑥) = 𝑒−𝑡(𝐶1𝑐𝑜𝑠(𝛾𝑥) + 𝐶2𝑠𝑖𝑛(𝛾𝑥))
1 (𝜎+1)⁄

,                                 (4.6) 

где 𝐶1 ∈ 𝑅1 и 𝐶2 ∈ 𝑅1 – произвольные постоянные интегрирования, а коэффициент 𝛾, также 

как и в предыдущем случае, определяется по формуле (4.3). 

Решение (4.6) уравнения (1.2), а также решение уравнения (1.4), выражаемое формулой 

для 𝑇𝜎+1 и имеющее аналог в [7, с.50] (см. замечание 1.2), являются инвариантами оператора 

−𝜕𝑡 + 𝑇𝜕𝑇. 

4.4. Подалгебры 〈𝜶𝑿𝟑(𝟑) + 𝑿𝟒(𝟑)〉. Согласно списку (3.1) при каждом фиксированном 

значении параметра 𝛼 ∈ 𝑅1 порождающий эту подалгебру инфинитезимальный оператор 

может быть представлен в виде: 

                                    𝛼𝑋3(3) + 𝑋4(3) = 2𝑡𝜕𝑡 + 𝑥𝜕𝑥 + 𝛼𝑇𝜕𝑇 .                                   (4.7) 

Раздельно рассмотрим случаи 𝛼 = 0 и 𝛼 ≠ 0. В случае 𝛼 = 0 из (4.7) имеем 

𝛼𝑋3(3) + 𝑋4(3) = 𝑋4(3) = 2𝑡𝜕𝑡 + 𝑥𝜕𝑥 = 𝑋3(1), 

но, тем не менее, иcпользовать соответствующей оператору 𝑋3(1) готовую формулу (9.12) из 

[1, с.129] мы не можем по причине указанной в начале этого раздела. Анализ показал, что 

уравнение (1.2) при условии 𝛼 = 0 не имеет решения в конечном виде. Поэтому в соответствии 

с постановкой задачи и со сказанном в разделе 3 исследование этого случая мы исключили из 

этого подраздела (он вкратце рассмотрен нами в примечании 4). 

Рассмотрим теперь случай, когда 𝛼 ≠ 0. Характеристические уравнения, соответству-

ющие дифференциальному уравнению в частных производных (𝛼𝑋3(3) + 𝑋4(3))𝜂 = 0 имеют 

вид: 𝑑𝑡 2𝑡⁄ = 𝑑𝑥 𝑥⁄ = 𝑑𝑇 𝛼𝑇⁄ . Решив эти уравнения, находим оба искомые инварианта опера-

тора 𝛼𝑋3(3) + 𝑋4(3): 

𝑦 = 𝑥𝑡−1 2⁄ , 𝑧 = 𝑇𝑡−𝛼 2⁄ . 

Следовательно, искомое точное решение будет иметь вид 𝑧 = 𝑤(𝑦), а в исходных пере-

менных: 

𝑇 = 𝑡𝛼 2⁄ 𝑤(𝑥𝑡−1 2⁄ ), 
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где 𝑤 − искомая функция.  

При фиксированном значении параметра 𝛼 уравнение теплопроводности (1.2), с учетом 

новых инвариантных переменных 𝑦 и 𝑧, сводится к следующему редуцированному уравне-

нию:  

𝜒𝑦𝑦 +
𝑐𝑎

2𝑘
𝑦𝜒𝑦 −

𝛼𝑐𝑎(𝜎+1)

2𝑘
𝜒 = 0,                                                 (4.8) 

где 𝜒 = 𝑧𝜎+1. 

Проведенный нами анализ показал, что сам вид конечных точных решений уравнения 

(4.8) определяется исключительно конкретными значениями параметра 𝛼 ∈ 𝑅1. 

Ниже, в пп. 4.4.1–4.4.3 мы опишем поиск таких точных решений уравнения (4.8), 

которые соответствуют некоторым конкретным значениям параметра 𝛼. Кроме того, на основе 

найденных решений определим соответствующие точные инвариантные решения уравнения 

теплопроводности (1.2). 

4.4.1. Решение уравнения (4.8) при 𝜶 = −(𝝈 + 𝟏)−𝟏. При указанном значении параметра 

𝛼,  

уравнение (4.8) можно представить в виде: 

𝜒𝑦𝑦 +
𝑐𝑎

2𝑘
(𝑦𝜒)𝑦 = 0, 

откуда, после интегрирования, мы приходим к уравнению Риккати [8, с.41] следующего вида: 

𝜒𝑦 +
𝑐𝑎

2𝑘
𝑦𝜒 = 𝐶1, 𝐶1 ∈ 𝑅1.  

Точное решение (в конечном виде) этого уравнения получается при значении 𝐶1 = 0: 

𝜒 = 𝐶𝑒−(𝑐𝑎 4𝑘⁄ )𝑦2
  ∀𝐶 ∈ 𝑅1 ∖ (−∞, 0],  

откуда перейдя к исходным переменным получим искомое точное решение уравнения (1.2): 

𝑇(𝑡, 𝑥) = 𝐶𝑡−1 2(𝜎+1)⁄ 𝑒−(𝑐𝑎 4𝑘(𝜎+1)⁄ )𝑥2𝑡−1
  ∀𝐶 ∈ 𝑅1 ∖ (−∞, 0].                     (4.9) 

Решение (4.9) уравнения теплопроводности (1.2) есть инвариант инфинитезимального 

оператора 2𝑡𝜕𝑡 + 𝑥𝜕𝑥 − (𝜎 + 1)−1𝑇𝜕𝑇. Теперь мы знаем, что согласно (1.3) инвариантом этого 

же оператора является решение 𝑢 = 𝑇𝜎+1 уравнения (1.4), получаемое из формулы (4.9) путем 

возведения степень и имеющий аналог в [7, с.50] (см. замечание 1.2). 

Отметим, что в случае, когда 𝐶1 ≠ 0 уравнение (1.2) не имеет конечного решения. 

4.4.2. Решение уравнения (4.8) при 𝜶 = (𝝈 + 𝟏)−𝟏. При этом значении параметра 𝛼 

решение уравнения (4.8) имеет следующий вид: 

𝑦 = 𝐶𝜒  ∀𝐶 ∈ 𝑅1, 

откуда перейдя к исходным переменным получим искомое точное решение уравнения (1.2): 

𝑇(𝑡, 𝑥) = 𝐶𝑥1 (𝜎+1)⁄   ∀𝐶 ∈ 𝑅1,                                                (4.10)  

Решение (4.10) имеет тривиальный вид и является инвариантом инфинитезимального 

оператора 2𝑡𝜕𝑡 + 𝑥𝜕𝑥 + (𝜎 + 1)−1𝑇𝜕𝑇. Теперь мы знаем, что согласно (1.3) инвариантом этого 

оператора является также решение 𝑢 = 𝑇𝜎+1 уравнения (1.4), получаемое из формулы (4.10) 

путем возведения степень и имеющий аналог в [7, с.50] (см. замечание 1.2). 

Не следует думать, что независимость решения (4.10) от времени входит в противоречие 

приведенной выше формой зависимости функции 𝑤 от времени. Просто в этом случае правая 

часть (4.10) является естественным следствием соотношений: 

𝑇 = 𝑡1 2(𝜎+1)⁄ 𝑤(𝑥𝑡−1 2⁄ ) = 𝐶𝑡1 2(𝜎+1)⁄ (𝑥𝑡−1 2⁄ )
1 (𝜎+1)⁄

. 

4.4.3. Решение уравнения (4.8) при 𝜶 = 𝒎 (𝝈 + 𝟏)  ∀𝒎 ∈ 𝑵 ∖ {𝟏}⁄ . Ниже предположено, 

что символ [𝜗] – обозначает целую часть вещественного числа 𝜗 и 0! = 1.  

Справедливо следующее утверждение: 

Лемма. Уравнение (4.8) при любом параметре α вида α = m (σ + 1)  ∀m ∈ N ∖ {1}⁄  имеет 

конечное точное решение следующего вида: 
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𝜒(𝑦) = 𝐶 ∙ ∑
(𝑘 𝑐𝑎⁄ )𝑖−1

𝑖!∙(𝑚−2𝑖)!

[𝑚 2⁄ ]
𝑖=0  𝑦𝑚−2𝑖 ∀𝐶 ∈ 𝑅1.                             (4.11) 

Доказательство леммы хоть и громоздкое, но нетрудное и проводится путем прямой 

подстановки формулы (4.11) в уравнение (4.8) при любом фиксированном значении натураль-

ного числа 𝑚 ≥ 2 и параметра 𝛼 = 𝑚 (𝜎 + 1)⁄ . Отметим, что при проведении доказательства 

имеет смысл воспользоваться простым правилом сдвига значений индекса суммы. Во избежа-

нии путаницы доказательство леммы намного удобнее провести для двух случаев раздельно: 

для случая нечетких чисел вида 𝑚 = 2𝑛 + 1 и для случая четких чисел вида 𝑚 = 2𝑛 ∀𝑛 ∈ 𝑁. 

Из формулы (4.11) возвращаясь к исходным переменным с помощью соотношений: 

𝑦 = 𝑥𝑡−1 2⁄ , 𝑇 = 𝑡𝑚 2(𝜎+1)⁄ 𝜒1 (𝜎+1)⁄ ,  

приходим как следствие к следующему результату: 

Для любого параметра α вида α = m (σ + 1)  ∀m ∈ N ∖ {1}⁄  уравнение теплопровности 

(1.2) имеет точное решение следующего вида: 

𝑇(𝑡, 𝑥) = 𝐶 (∑
(𝑘 𝑐𝑎⁄ )𝑖−1

𝑖!∙(𝑚−2𝑖)!
𝑥𝑚−2𝑖𝑡𝑖[𝑚 2⁄ ]

𝑖=0 )
1 (𝜎+1)⁄

∀𝐶 ∈ 𝑅1,                (4.12) 

инвариантное относительно инфинитезимального оператора 
𝑚

𝜎+1
𝑋3(3) + 𝑋4(3) =  2𝑡𝜕𝑡 + 𝑥𝜕𝑥 +

𝑚

𝜎+1
𝑇𝜕𝑇. 

В справедливости формулы можно убедиться и непосредственным способом, а именно, 

путем подстановки (4.12) в уравнение (1.2), а также проверки инвариантности решения (4.12) 

относительно указанного инфинитезимального оператора. При этом опять же, как было отме-

чено выше, удобно эти операции провести раздельно для нечетких и четных значений числа 

𝑚. 

Если в соответствии с (1.3) возвести обе стороны равенства (4.12) на степень 𝜎 + 1, то  

полученная формула для 𝑇𝜎+1: 

𝑢 = 𝑇𝜎+1 = 𝐶1 ∙ ∑
(𝑘 𝑐𝑎⁄ )𝑖−1

𝑖!∙(𝑚−2𝑖)!
𝑥𝑚−2𝑖𝑡𝑖[𝑚 2⁄ ]

𝑖=0   ∀𝐶1 ∈ 𝑅1,                              (4.13) 

выразит точное решение линейного уравнения (1.4). 

Аналог решения (4.13) имеется в [7, с.50], где она представлена двумя формулами (для 

четных и нечетких чисел соответственно). Разница между этими двумя формулами и форму-

лой (4.13) не исчерпывается тем, что мы решение уравнения (1.4) представили не двумя, а 

одной формулой. Дело в том, что в [7, с.50] произведение 𝑝𝑖−1𝑥𝑚−2𝑖𝑡𝑖 из (4.13), где 𝑝 = 𝑘 𝑐𝑎⁄ , 

представлено в виде 𝑥𝑚−2𝑖(𝑝𝑡)𝑖. С учетом однородности уравнения (1.4) такое представление 

произведения можно считать законным, однако, лишь в том случае, если бы величина 𝑝 была 

физически безразмерной. Но величина 𝑝 – размерная, следовательно, именно полученная нами 

формула (4.13) оказывается более корректной.  

Действительно, используя приведенные в [1, с.121] физические размерности величин 𝑘, 

𝑐 и 𝑎, легко можно определить, что величина 𝑝 = 𝑘 𝑐𝑎⁄  в рассматриваемом случае 3 имеет 

физическую размерность м2 /сек. Отметим, что размерность величины 𝑝 в предыдущих рас-

смотренных случаях 1 и 2 другая. 

Теперь мы знаем, что при любом фиксированном значении m ∈ N ∖ {1} не только реше-

ние (4.12), но и решение (4.13) суть инварианты оператора 2𝑡𝜕𝑡 + 𝑥𝜕𝑥 +
𝑚

𝜎+1
𝑇𝜕𝑇. 

4.5. Подалгебра 〈𝑿𝟓(𝟑)〉.  Один из инвариантов оператора 𝑋5(3) = −
2𝑘(𝜎+1)

𝑐𝑎
𝑡𝜕𝑥 + 𝑥𝑇𝜕𝑇, 

очевидно, имеет вид 𝑦 = 𝑡. Bторой инвариант найдем путем решения характеристического 

уравнения для уравнения в частных производных, определяемым оператором 𝑋5(3): 
𝑋5(3)𝑧 = 0.  

Имеем 
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𝑧 = 𝑇−1𝑒−(𝑐𝑎 4𝑘(𝜎+1)⁄ )𝑥2𝑡−1
. 

Так что искомое точное решение будет иметь вид 𝑧 = 𝑤(𝑦), а в исходных переменных: 

𝑇 = 𝑤−1(𝑡)𝑒−(𝑐𝑎 4𝑘(𝜎+1)⁄ )𝑥2𝑡−1
, 

где 𝑤 − искомая функция. 

По реализации необходимых действий получим редуцированное уравнение в 

следующем виде: 

𝑧−1𝑧𝑦 = (1 2(𝜎 + 1)⁄ )𝑦−1. 

После решения этого дифференциального уравнения и перехода к исходным перемен-

ным получим точное решение уравнения (1.2) в виде (4.9), причем в данном случае ограниче-

ние на значения постоянной интегрирования отменяется (т.е. становятся произвольными). 

Таким образом, точное решение (4.9) является инвариантом одновременно следующих 

двух инфинитезимальных операторов 2𝑡𝜕𝑡 + 𝑥𝜕𝑥 − (𝜎 + 1)−1𝑇𝜕𝑇 и −
2𝑘(𝜎+1)

𝑐𝑎
𝑡𝜕𝑥 + 𝑥𝑇𝜕𝑇. В 

соответствии с (1.3) инвариантом этих же операторов является также решение 𝑢 = 𝑇𝜎+1 урав-

нения (1.4), получаемое из формулы (4.9) путем возведения степень и имеющий аналог в [7, 

с.50] (см. замечание 1.2). 

4.6. Подалгебра 〈𝑿𝟑(𝟑) + 𝜶𝑿𝟒(𝟑) + 𝑿𝟓(𝟑)〉, случай 𝜶 = 𝟎. В соответствии с (3.1) имеет 

место следующее равенство:  

𝑋3(3) + 𝛼𝑋4(3) + 𝑋5(3) = 2𝛼𝑡𝜕𝑡 + (𝛼𝑥 −
2𝑘(𝜎+1)

𝑐𝑎
𝑡) 𝜕𝑥 + (𝑥 + 1)𝑇𝜕𝑇. 

Из этого равенства при условии 𝛼 = 0 следует, что 

𝑋3(3) + 𝑋5(3) = −
2𝑘(𝜎+1)

𝑐𝑎
𝑡𝜕𝑥 + (𝑥 + 1)𝑇𝜕𝑇. 

Один из инвариантов этого инфинитезимального оператора, очевидно, имеет вид 𝑦 = 𝑡. 
Второй инвариант найдем путем решения характеристического уравнения соответствующего 

дифференциальному уравнению в частных производных (𝑋3(3) + 𝑋5(3)𝑧 = 0). Имеем 

𝑧 = 𝑇𝑒(𝑐𝑎 4𝑘(𝜎+1)⁄ )(𝑥+1)2𝑡−1
. 

Таким образом, искомое точное решение исходного уравнения теплопроводности (1.2) 

будет иметь вид 𝑧 = 𝑤(𝑦), а в исходных переменных: 

𝑇 = 𝑒−(𝑐𝑎 4𝑘(𝜎+1)⁄ )(𝑥+1)2𝑡−1
𝑤(𝑡), 

где 𝑤 − искомая функция. 

Уравнение теплопроводности (1.2) в новых инвариантных переменных 𝑦 и 𝑧 

редуцируется к следующему обыкновенному дифференциальному уравнению первого поряд-

ка: 

𝑧𝑦 = −(1 2(𝜎 + 1)⁄ )𝑧𝑦−1. 

Полученное уравнение интегрируется в разделенных переменных и дает нам следующее 

решение: 

𝑦 = 𝐶𝑦−1 2(𝜎+1)⁄  ∀𝐶 ∈ 𝑅1.                                                   (4.14) 

После перехода в (4.14) к исходным переменным получим решение уравнения (1.2) в 

следующем виде: 

𝑇(𝑡, 𝑥) = 𝐶𝑡−1 2(𝜎+1)⁄ 𝑒−(𝑐𝑎 4𝑘(𝜎+1)⁄ )(𝑥+1)2𝑡−1
 ∀𝐶 ∈ 𝑅1.                           (4.15)    

Точное решение (4.15) является инвариантом оператора −
2𝑘(𝜎+1)

𝑐𝑎
𝑡𝜕𝑥 + (𝑥 + 1)𝑇𝜕𝑇. В 

соответствии с (1.3) инвариантом этого оператора является также решение 𝑢 = 𝑇𝜎+1 

уравнения (1.4), получаемое из формулы (4.15) путем возведения степень и имеющий аналог 

в [7, с.50] (см. замечание 1.2). 

Замечание 4.2. Напомним, что согласно постановке задачи мы ищем такие точные 

решения уравнения теплопроводности (1.2), которые имеют конечный вид, т.е. могут быть 
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выражены без использования рядов или специальных функций. Как выяснилось, при выполне-

нии неравенства 𝛼 ≠ 0 один из решений характеристического уравнения, соответствующего 

дифференциальному уравнению в частных производных (𝑋3(3) + 𝛼𝑋4(3) + 𝑋5(3))𝜂 = 0, не 

имеет представления в конечном виде. По этой причине мы отказались от поиска точных 

инвариантных относительно оператора 𝑋3(3) + 𝛼𝑋4(3) + 𝑋5(3) решений уравнения (1.2) при 

выполнении неравенства 𝛼 ≠ 0. 

Отметим, что к выяснению причин наблюдающегося сходства между формулами точных 

решений (4.9) и (4.15) мы приступим в разделе 5. 

4.7. Подалгебра 〈−𝑿𝟑(𝟑) + 𝜶𝑿𝟒(𝟑) + 𝑿𝟓(𝟑)〉, случай 𝜶 = 𝟎. Порождающий эту 

подалгебру инфинитезимальный оператор отличается от предыдущего оператора только 

одним знаком: 

−𝑋3(3) + 𝑋5(3) = −
2𝑘(𝜎+1)

𝑐𝑎
𝑡𝜕𝑥 + (𝑥 − 1)𝑇𝜕𝑇. 

Как показали выкладки, отличия данного случая от предыдущего проявляются в том, что 

здесь дифференциальный инвариант 𝑧 имеет вид 

𝑧 = 𝑇𝑒(𝑐𝑎 4𝑘(𝜎+1)⁄ )(𝑥−1)2𝑡−1
, 

а точное решение уравнения теплопроводности (1.2) определяется следующей формулой: 

          𝑇(𝑡, 𝑥) = 𝐶𝑡−1 2(𝜎+1)⁄ 𝑒−(𝑐𝑎 4𝑘(𝜎+1)⁄ )(𝑥−1)2𝑡−1
 ∀𝐶 ∈ 𝑅1.                           (4.16)  

Решение (4.16) является инвариантом оператора −
2𝑘(𝜎+1)

𝑐𝑎
𝑡𝜕𝑥 + (𝑥 − 1)𝑇𝜕𝑇. В соответ-

ствии с (1.3) инвариантом этого же оператора является также решение 𝑢 = 𝑇𝜎+1 уравнения 

(1.4), получаемое из формулы (4.16) путем возведения степень и имеющий аналог в [7, с.50] 

(см. замечание 1.2). 

По причине, указанной в замечании 4.2, мы здесь отказались от поиска точных решений 

уравнения (1.2), инвариантных относительно оператора −𝑋3(3) + 𝛼𝑋4(3) + 𝑋5(3) (при 

соблюдении условия 𝛼 ≠ 0). 

5. Обобщение формул точных решений (4.9),(4.15) и (4.16). При контрольной проверке 

точности формул решений (4.9), (4.15) и (4.16) путем непосредственной подстановки их в 

уравнение теплопроводности (1.2), мы заметили интересную закономерность. Для ее описания 

сначала обратим внимание на то, что все эти три формулы различаются между собой 

множителями 𝑥2, (𝑥 + 1)2 и (𝑥 − 1)2 в выражениях, имеющихся в показателях экспонен-

циальной функции. Затем, несложно заметить, что формулы (4.15) и (4.16) легко следуют из 

формулы (4.9) соответствующими сдвигами переменной 𝑥: 𝑥 → 𝑥 + 1 и 𝑥 → 𝑥 − 1. Далее, 

выяснилось, что на сам ход проверочных работ никак не влияют конкретные значения пара-

метров (в данном случае постоянных 1 и −1), определяющих сдвиги. Значения этих постоян-

ных играют существенную роль для инвариантности решений относительно соответствующих 

инфинитезимальных операторов.  

Иначе говоря, получается, что если в формуле решения (4.9) формально осуществить 

сдвиг по переменной 𝑥 вида: 𝑥 → 𝑥 + 𝐶2 ∀𝐶2 ∈ 𝑅1, то полученная новая формула также должна 

быть точным решением уравнения теплопроводности (1.2). Это наблюдение, подтверждаемое, 

кстати, также тем фактом, что уравнение (1.2) допускает однопараметрическую группу сдви-

гов по переменной 𝑥, позволило обобщить формулы (4.9), (4.15) и (4.16) и мы пришли к 

следующей формуле решения:  

𝑇(𝑡, 𝑥) = 𝐶1𝑡−1 2(𝜎+1)⁄ 𝑒−(𝑐𝑎 4𝑘(𝜎+1)⁄ )(𝑥+𝐶2)2𝑡−1
,                           (5.1) 

где 𝐶1 ∈ 𝑅1 и 𝐶2 ∈ 𝑅1 − произвольные постоянные. 

Формула (5.1) определяет точное решение уравнения (1.2) (в чем можно убедиться путем 

непосредственной подстановки ее в уравнение). В отличие от формул решений (4.9),(4.15) и 
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(4.16), формула (5.1) зависит от двух независимых постоянных. Из этой формулы задавая 

поочередно постоянному 𝐶2 конкретные значения 0, 1 и −1 можно получить все три формулы 

(4.9), (4.15) и (4.16) соответственно. 

Легко можно проверить, что решение (5.1) уравнения теплопроводности (1.2) является 

инвариантом инфинитезимальных операторов (при одинаковых значениях 𝐶2) 

𝐶2𝑋3(3) + 𝑋5(3) = −
2𝑘(𝜎+1)

𝑐𝑎
𝑡𝜕𝑥 + (𝑥 + 𝐶2)𝑇𝜕𝑇.                               (5.2) 

Очевидно, что задавая в (5.2) постоянной 𝐶2 поочередно значения 0, 1 и −1 можно 

получить операторы 𝑋5(3), 𝑋3(3) + 𝑋5(3) и −𝑋3(3) + 𝑋5(3), являющиеся порождающими 

операторами соответствующих подалгебр из списка (3.4). Следует обратить внимание на то, 

что ни при каком значении вещественной постоянной 𝐶2 из формулы (5.2) невозможно полу-

чить оператор −(𝜎 + 1)−1𝑋3(3) + 𝑋4(3), относительно которого решение (4.9) также является 

инвариантом. 

При любом фиксированном значении 𝐶2 инвариантом оператора (5.2) является также 

решение 𝑢 = 𝑇𝜎+1 линейного уравнения теплопроводности (1.4). Это решение получается из 

формулы (5.1) путем возведения в степень (обе стороны равенства (5.1)) в соответствии с (1.3). 

Оно имеет аналог в [7, с.50] (см. замечание 1.2). 

6. Выводы. Настоящая работа уже третья по счету статья, посвященная групповому 

анализу нового уравнения теплопроводности (1.1), выведенного нами в I части работы [1] для 

математического описания поведения идеального политропного газа, участвующего в 

одномерном термодинамическом процессе. Термодинамическое обоснование правомерности 

этого нелинейного уравнения теплопроводности [1, с.120, 121] оказался настолько кратким, 

простым и естественным, что у нас после вывода этого уравнения возникли даже сомнения, 

связанные с новизной уравнения. Само уравнение (1.1) нам, несмотря на все наши старания, 

не удалось найти ни в доступной нам литературе и ни в замечательном и регулярно 

обновляемом сайте [9]. Хотя, для полноты изложения мы должны вспомнить, что уравнение 

(1.1) первый из авторов уже получал еще в 2004 году [10], правда, более сложным способом. 

Сразу же после вывода уравнения теплопроводности (1.1) мы приступили к групповому 

анализу этого уравнения [1, с.122, 132]. Это исследование продолжалось в [2, с.121, 133] и в 

настоящей статье.  

В первых двух работах нам удалось найти ряд точных инвариантных решений уравнения 

теплопроводности (1.1), в случаях, когда это уравнение существенно нелинейное (т.е. не 

сводимо к линейному уравнению). В настоящей же работе рассматривается случай, когда 

уравнение (1.1) приобретает вид уравнения (1.2), которое в свою очередь с помощью преобра-

зования (1.3) сводится к хорошо известному линейному уравнению теплопроводности (1.4). 

Возможность такого действия обеспечивается тем, что уравнение (1.2) допускает подалгебры 
〈𝑋3(3)〉 и 𝐿∞ из списка допускаемых подалгебр (3.2).   

Если 𝑢 = 𝑢(𝑡, 𝑥) – любое решение уравнения теплопроводности (1.4), то в соответствие 

с преобразованием (1.3) формула 𝑇(𝑡, 𝑥) = (𝑢(𝑡, 𝑥))
1 (𝜎+1)⁄

 определяет решение уравнения 

(1.2). Например, таким путем можно из фундаментального решения решения уравнения (1.4) 

[7, с.50] получить соответствующее точное решение уравнения (1.2) вида: 

𝑇(𝑡, 𝑥) = (
1

2√𝜋(𝑘 𝑐𝑎⁄ )
𝑡−1 2⁄ 𝑒−(𝑐𝑎 4𝑘⁄ )𝑥2 𝑡⁄ )

1 (𝜎+1)⁄

. 

Формально это же решение получается из формулы решения (4.9) путем соответству-

ющего выбора значения постоянной 𝐶 > 0 (слово формально мы употребили из за того, что 
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при таком выборе нам неизбежно при восстановлении физических размерностей рассматрива-

емых величин, придется придать размерность безразмерной постоянной 𝐶 из формулы (4.9), 

что не представляется нам достаточно корректным).  

Нам удалось выяснить, что точное решение (4.9) уравнения теплопроводности (1.2) 

является инвариантом как минимум одновременно двух инфинитезимальных операторов 

2𝑡𝜕𝑡 + 𝑥𝜕𝑥 − (𝜎 + 1)−1𝑇𝜕𝑇 и −
2𝑘(𝜎+1)

𝑐𝑎
𝑡𝜕𝑥 + 𝑥𝑇𝜕𝑇. Были выявлены инвариантные свойства 

также точных решений (4.1),(4.4),(4.6),(4.10),(4.12),(4.15) и (4.16) уравнения (1.2). Формула 

(5.1) представляет собой обобщение формул решений (4.9),(4.15) и (4.16). Отметим, что мы из 

найденных решений используя группы преобразований, однозначно определяемые 

порождающими операторами рассмотренных нами подалгебр из (3.2), можем получать новые 

точные решения уравнения (1.2) по схеме, описанной в [5, с.163-167] для уравнения вида: 

𝑢𝑡 = 𝑢𝑥𝑥. 

Проведенный нами поиск точных решений уравнения (1.4), позволил также обнаружить 

небольшой изъян, связанный с наличием в двух приведенных в [7, с.50] формулах, описываю-

щих счетное множество точных решений этого уравнения, нарушения баланса размерностей 

рассматриваемых величин. Полученная нами формула (4.13), заменяющая две эти упомянутые 

формулы из [7, с.50], лишена этого недостатка. 

Примечания:  

1. Следует уточнить, что выведенное в [1] нелинейное уравнение теплопроводности для 

идеального политропного газа на самом деле имело следующий вид: 

𝑐𝑎𝑇𝑏(𝑟)𝑇𝑡 = (𝑘0𝑇𝑥)𝑥. 
а переход к уравнению (1.1) был осуществлен после допущения о том, что коэффициент 

теплопроводности 𝑘0  является степенной функцией температуры, т.е. 𝑘0 = 𝑘𝑇𝜎.   
2. Если перечисленные в примечание 1 статье [1, с.131] физические условия дополнить усло-

вием разреженности нагреваемого газа, то адекватность уравнения теплопроводности (1.1) 

существенно возрастает.  
3. Для порождающего оператора подалгебры 〈𝑋1(3) + 𝑋5(3)〉 в соответствии с (3.1) имеет 

место следующее равенство: 𝑋1(3) + 𝑋5(3) = 𝜕𝑡 −
2𝑘(𝜎+1)

𝑐𝑎
𝑡𝜕𝑥 + 𝑥𝑇𝜕𝑇. При решении систе-

мы характеристических уравнений, соответствующей уравнению в частных производных: 

(𝑋1(3) + 𝑋5(3))𝜂 = 0, один из инвариантов 𝜂 = 𝑦 этого оператора легко определяется и 

имеет вид: 𝑦 = 𝑡2 + (𝑐𝑎 𝑘(𝜎 + 1)⁄ )𝑥. Однако, найти таким же путем второй инвариант 𝜂 =
𝑧 оказался невозможным, что и исключило возможность сведения уравнения теплопровод-

ности (1.2) к редуцированному уравнению. Аналогичная ситуация возникает и при рас-

смотрении подалгебры 〈−𝑋1(3) + 𝑋5(3)〉. Подалгебры из списка (3.2), порождающие опе-

раторы которых содержат инфинитезимальный оператор 𝑋6(3) также исключены из 

рассмотрения. Поскольку выяснилась, что дифференциальные инварианты таких порожда-

ющих операторов не могут целиком представлены в конечном виде (т.е. без использования 

рядов или специальных функций).  

4. Одним из инвариантов оператора 𝑋4(3) является функция 𝑧 = 𝑇. Второй инвариант 

определяется также как в [1, с.128] и имеет вид: 𝑦 = 𝑥𝑡−1 2⁄ . После проведеия необходимых 

выкладок получим редуцированное уравнение в виде: 𝜒𝑦 +
𝑐𝑎

2𝑘
𝑦𝜒 = 0, где 𝜒 = (𝑧𝜎+1)𝑦. 

Откуда, после интегрирования имеем: 𝜒 = 𝐶1𝑒−(𝑐𝑎 4𝑘⁄ )𝑦2
, где 𝐶1 > 0 – постоянная 

интегрирования. Повторное интегрирование и последующий переход к исходным 

переменным, приводят нас к формуле точного решения уравнения (1.2) в виде сходящегося 

ряда с суммой, называемой интегралом вероятности [11, с.119]. 
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Ə.Ə. Axundov, E.M. Axundova 

Politrop qaz üçün istilikkeçirmə tənliyi və onun kəsilməz qrup analizinin bəzi nəticələri (III hissə) 

Bu məqalə ilə biz ideal politrop qazda baş verən termodinamik prosesləri təsvir edə bilmək üçün çıxarılışı işin I 

hissəsində verilmiş yeni istilikkeçirmə tənliyinin Li qrupları nəzəriyyəsi vasitəsi tədqiqini sona çatdırırıq. Baxılan III 

hissədə əvvəlki hissələrdən fərqli olaraq tədqiq olunan istilikkeçirmə tənliyi sonsuz ölçülü Li cəbrinə malikdir. İşdə 

aşkarlanan həllərin invariantlıq xassələri tədqiq olunmuşdur. 

Açar sözlər: istilikkeçirmə tənliyi, alt cəbr, dəqiq həllər, invariant 

 

 

A.A. Akhundov, E.M. Akhundova 

Equations of heat conductivity for polytrophic gas and some results of its continuous group analysis  

(part III) 

This article concludes our series of three articles devoted to the analysis of the new group of the heat equation, 

derived in part I ofwork on the basis of known thermodynamic considerations. The third and final part of the work is 

qualitatively different from the previous parts in the fact that the test equation here admits an infinite-dimensional Lie 

algebra. Invariant solutions are established. 

Keywords: equation of heat conductivity, sub algebra, exact solutions, invariant 
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