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УТОЧНЕНИЕ ФИЗИЧЕСКИХ РАЗМЕРНОСТЕЙ ДЛЯ ОДНОГО СЕМЕЙСТВА 

ТОЧНЫХ РЕШЕНИЙ ЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ 
 

Приведено важное уточнение замечания о физических размерностях некоторого семейства точных 

решений, сделанного нами в заключительной III части работы, посвященной исследованию с позиций теории 

групп Ли уравнения теплопроводности, описывающего поведение идеального политропного газа в случае, когда 

исследуемое уравнение допускает бесконечномерную алгебру Ли.  
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1. Введение. В [1] с целью установления некоторых свойств инвариантности решений 

был проведен непрерывный групповой анализ известного линейного уравнения тепло-

проводности вида  

𝑐𝑎𝑢𝑡 = 𝑘𝑢𝑥𝑥.                                                              (1.1) 

Нужные для наших рассуждений подробные сведения о физических размерностях 

величин из (1.1) мы привели ниже после формулы (1.3). 

Уравнение (1.1) было получено нами путем применения преобразования 

𝑢 = 𝑇𝜎+1 
к уравнению 

  𝑐𝑎𝑇𝜎𝑇𝑡 = 𝑘(𝑇𝜎𝑇𝑥)𝑥.                                                        (1.2) 

Уравнение (1.2), в свою очередь, является частным случаем следующего нелинейного 

уравнения теплопроводности  

                                                       𝑐𝑎𝑇𝑏(𝑟)𝑇𝑡 = 𝑘(𝑇𝜎𝑇𝑥)𝑥,                                              (1.3) 

выведенного нами в [2, с.121] на основе термодинамических соображений. 

Здесь 𝑇 = 𝑇(𝑡, 𝑥) – температура, измеряется в кельвинах, т.е. ⟦𝑇⟧ = 𝐾, 𝑡 − время и ⟦𝑡⟧ =
 сек, 𝑥 − пространственная координата, ⟦𝑥⟧ = м (м – метр), 𝑐 − удельная массовая 

теплоемкость и ⟦𝑐⟧ = Дж кг-1 𝐾−1, ⟦𝑎⟧ = кг м-3 𝐾1 (1−𝑟)⁄ , 𝑟 − показатель политропы, является 

безразмерной величиной, 𝑏(𝑟) = 1 (𝑟 − 1)⁄ , 𝑟 ≠ 1, безразмерной величиной является и 

показатель степени 𝜎 > 0 и, наконец, ⟦𝑘⟧ = Дж м-1 сек-1 𝐾−(𝜎+1).  

Предполагается, что 𝑡 > 0, 𝑥 > 0, 𝑇 > 0.    
Отметим, что здесь для указания физических размерностей величин, вместо 

традиционно используемых прямых скобок [ ], нам пришлось обратиться к скобкам вида 
⟦ ⟧, поскольку обычные прямые скобки с одинарными черточками перегружены, т.е. 

использованы в тексте в двух различных смыслах. Отметим также, что физические 

размерности плотности рабочего тела и удельной газовой постоянной здесь использованы 

при определении размерности величины 𝑎 [2, с.121]. 

Замечание 1.1. В [2, с.121] пока речь шла о выводе уравнения (1.3), мы считали важным 

акцентировать внимание на физических размерностях встречающихся нам величин. Однако 

далее в [1, 3] при непрерывном групповом анализе [4-7] этого же уравнения мы уже 

исходили из предположения о том, что все встречающиеся размерные физические величины 

представлены в относительных единицах, т.е. в безразмерном виде и с сохранением прежних 

обозначений. Такое же предположение о сохранении одинаковых обозначений для 

размерных величин и их безразмерных аналогов, сделанное нами исключительно с целью 

экономии места, было сделано нами также в работах [1, 3].  
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Если не принять во внимание это замечание, то избежать ошибок практически 

невозможно. Поясним сказанное на примере одного из точных решений уравнения (1.3) в 

случае, когда одновременно имеют место следующие неравенства: 

𝑏(𝑟) ≠ 𝜎, 𝑏(𝑟) ≠ −(3𝜎 + 4). 
В этом случае, согласно [2, с.127] формулой 

𝑇(𝑡, 𝑥) = (𝐶 +
𝑐𝑎(𝑏(𝑟)−𝜎)

𝑘(𝑏(𝑟)+1)
(𝑥 − 𝑡))

1 (𝜎−𝑏(𝑟))⁄

                                (1.4) 

определяется точное решение уравнения (1.3), справедливое при соблюдении неравенства 

𝑏(𝑟) ≠ −1 

и инвариантное относительно инфинитезимального оператора 

𝑋 = (𝑏(𝑟) − 𝜎)𝑡𝜕𝑡 + 𝑇𝜕𝑇, 

где 𝐶 – постоянная интегрирования. 

Если теперь не принять во внимание замечание 1.1, то мы сразу же приходим к 

недоразумению. Говоря конкретно, физическая размерность разности 𝑥 − 𝑡 из формулы (1.4) 

оказывается неопределенной, а именно, имеем ‖𝑥‖ − ‖𝑡‖ = м – сек, что безусловно является 

грубой ошибкой. Однако при учете замечания 1.1 мы понимаем, что несмотря на общность 

обозначений для величин из соотношений (1.3) и (1.4), они разные, т.е. использованные в 

(1.4) обозначения являются безразмерными аналогами соответствующих им по 

обозначениям величин из (1.3).  

Специалисты, имеющие дела с реальными приложениями хорошо знают, как из 

формулы (1.4) с безразмерными величинами можно перейти к аналогу этой формулы с 

размерными величинами. Однако иногда возникают ситуации, когда замечание 1.1 словно 

несколько дезавуируется и, казалось бы, входит в противоречие с очевидными на первый 

взгляд соображениями и, что печальное всего, приводит к ошибочным суждениям. Одну из 

таких ситуаций мы опишем в подразделе 3.   

2. Постановка задачи. Оказывается, что замечание о физических размерностях, 

сделанное нами в [1, с.20] относительно точного решения уравнения (1.1), приведенного в [8, 

с.50] теряет силу при учете замечания 1.1 и, наоборот, сохраняет силу при игнорировании 

этого замечания. Требуется выяснить причину сказанного. 

3. Решение задачи. Для дифференциации обозначений размерных величин и их 

безразмерных аналогов, исходно имеющих одинаковые обозначения, нам понадобится 

следующее определение: 

Определение 3.1. Для произвольной размерной физической величины 𝑍 положим, что  

𝑍° = 𝑍 ‖𝑍‖⁄ .                                                                 (3.1) 

Очевидно, что величина 𝑍° является безразмерной, а сам переход, от величины 𝑍 к ее 

безразмерному аналогу 𝑍°, определяемый формулой (3.1), принято называть представлением 

величины 𝑍 в относительных единицах. 

Применяя формулу 

𝑍 = 𝑍°‖𝑍‖ 
по отношению ко всем размерным величинам из уравнения (1.3) и осуществив все 

необходимые сокращения, получим следующий аналог уравнения (1.3) в относительных 

единицах: 

𝑐°𝑎°𝑇°𝑏(𝑟)
𝑇

𝑡°
° = 𝑘°(𝑇°𝜎

𝑇
𝑥°
𝜎 )

𝑥°.                                                  (3.2) 

Здесь для краткости записи мы решили не использовать дополнительные скобки. Так, 

обозначение 𝑇°𝑏(𝑟)
 понимается как (𝑇°)𝑏(𝑟) или 𝑇°𝜎

= (𝑇°)𝜎.  
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Возможность удачного проведения отмеченных выше необходимых сокращений 

связана с тем, что обе стороны уравнения теплопроводности (1.3) имеют одинаковую 

физическую размерность: Дж м-3 сек-1.  

Как мы уже отметили, баланс физических размерностей нарушается при получении 

точного решения (1.4) по причине, указанной в замечании 1.1. Однако уравнение (3.2) 

является безразмерным аналогом уравнения (1.3) и, в соответствии с замечанием 1.1, говоря 

о групповом анализе уравнения (1.3), мы в действительности имели ввиду анализ именно 

уравнения (3.2). Используя же формулу (3.1), мы легко можем из любого решения уравнения 

(3.2) снова перейти к решению исходного уравнения (1.3). В свете сказанного, 

недоразумение с размерностями, появившийся в связи с формулой (1.4) находит свое 

естественное разъяснение.  

Более тонкий случай подобного недоразумения, заставившего нас сделать 

неправильный вывод, встретился нам в [1, с.20]. В [1] мы, используя технику группового 

анализа, провели самостоятельный поиск точных инвариантных решений линейного 

уравнения  теплопроводности (1.1). При этом нам заранее было известно, что список точных 

решений этого уравнения приведен в [8, с.50], правда, без указания важных для нашего 

исследования свойств их инвариантности.  

Каково же было наше удивление, когда мы заметили, что один из полученных нами 

точных решений не совпадает с аналогичным точным решением из [8, с.50]. Этот факт 

заставил нас неоднократно проверить точность полученной нами формулы. Убедившись в 

правильности нашей формулы, мы стали уже сомневаться в точности соответствующей 

формулы из [8, с.50].  

Упомянутую нашу формулу точного инвариантного решения уравнения (1.1) из [1, 

с.20] можно представить следующим образом: 

Для любого параметра 𝛼 вида 𝛼 = 𝑚 (𝜎 + 1)  ∀𝑚 ∈ 𝑁 ∖ {1}⁄  уравнение теплопровод-

ности (1.1) имеет точное решение следующего вида: 

𝑢(𝑡, 𝑥) = 𝐶 ∙ ∑
𝑝𝑖−1

𝑖!∙(𝑚−2𝑖)!
𝑥𝑚−2𝑖𝑡𝑖[𝑚 2⁄ ]

𝑖=0   ∀𝐶 ∈ 𝑅1,                               (3.3) 

инвариантное относительно инфинитезимального оператора 

 2𝑡𝜕𝑡 + 𝑥𝜕𝑥 +
𝑚

𝜎+1
𝑇𝜕𝑇. 

Здесь 𝑁 – множество натуральных чисел, 𝑅1 – множество вещественных чисел, символ 
[𝜗] – обозначает целую часть числа 𝜗, 𝑝 = 𝑘 𝑐𝑎⁄  и 0! = 1. 

Формулами (3.3), справедливыми при каждом фиксированном значении натурального 

числа 𝑚 ≠ 1, определяется однопараметрическое семейство точных инвариантных решений 

линейного уравнения теплопроводности (1.1). 

В случае отказа от использования обозначения [𝜗], формула решения (3.3) описывается 

двумя формулами, записанными отдельно для четных и нечетных значений параметра 𝑚 (в 

[8, с.50] использован именно вариант с двумя формулами, что несущественно для нашего 

дальнейшего изложения).  

Загвоздка заключается в том, что в [8, с.50] произведение 𝑝𝑖−1𝑥𝑚−2𝑖𝑡𝑖 из (3.3) 

представлено в виде 𝑥𝑚−2𝑖(𝑝𝑡)𝑖. Т.е. правая сторона равенства (3.3) дополнительно умно-

жена на множитель 𝑝.  

Вероятно автор [8] это сделал ради того, чтобы получить запись формулы в более 

компактной форме. С учетом линейности и однородности уравнения (1.1) такое действие 

можно считать законным, однако, лишь в том случае, если бы величина 𝑝 была физически 

безразмерной. И тут мы в [1, с.20], забыв о сути замечания 1.1, заключили, что раз величина 

𝑝 – размерная (‖𝑝‖ = м2 /сек), то проведенное автором [8] действие с умножением правой 

стороны равенства (3.3) на множитель 𝑝 приведет к нарушению баланса размерностей для 
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этой формулы. Иначе говоря, при восстановлении физических размерностей, формулы 

решений из [8, с.50] окажутся неверными.  

Ввиду серьезности сказанного нами в [1, с.20] по поводу соответствующих формул из 

[8, с.50], мы теперь обязаны показать, что это вовсе не так. Однако для краткости записи 

воспользуемся для этого одной формулой, которой можно представить две соответствующие 

формулы из [8, с.50] (по аналогии с (3.3)). 

Сначала заметим, что обе стороны уравнения (1.1) имеют одинаковую физическую 

размерность: Дж м-3 сек-1 . Здесь при установлении размерности, мы воспользовались тем, 

что уравнение (1.2) вытекает из уравнения (1.3) при условии 𝑏(𝑟) = 𝜎.  

Это обстоятельство позволяет нам, путем применения определения 3.1, из уравнения 

(1.1) сразу же перейти к его безразмерному аналогу. Имеем 

𝑐°𝑎°𝑢
𝑡°
° = 𝑘°𝑢

𝑥°𝑥°
° .                                                         (3.4) 

Соответственно решение уравнения (3.4) согласно [8, с.50] может быть представлено в 

следующем виде: 

𝑢°(𝑡°, 𝑥°) = 𝐶 ∑
1

𝑖! (𝑚−2𝑖)!

[𝑚 2⁄ ]
𝑖=0  𝑥°𝑚−2𝑖

(𝑝°𝑡°)𝑖,                                     (3.5) 

где 𝑚 > 1 − произвольное натуральное число, а 𝐶 – постоянная интегрирования. 

Дополнительный множитель 𝑝° в правой стороне равенства (3.5) – безразмерный, а 

само уравнение (3.4) – линейное и однородное, следовательно, процедура умножения правой 

части безразмерного аналога формулы (3.3) на этот множитель законна.  

Можно убедиться в том, что при переходе с помощью соотношения (3.1) из формулы 

(3.5) к ее размерному аналогу каких-либо осложнений с балансом физических размерностей 

не возникает. 

4. Выводы. В работе выяснено, что информация о нарушении баланса физических 

размерностей, высказанная нами в [1, с.20] относительно точного решения уравнения (1.1), 

приведенного в [8, с.50] теряет силу при учете замечания 1.1 и, наоборот, сохраняет силу при 

игнорировании этого замечания. Сказанное верно и по отношению однопараметрического 

семейства точных инвариантных решений (3.3) линейного уравнения теплопроводности 

(1.1). 
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Xətti istilikkeçirmə tənliyinin dəqiq invariant həllərinin bir ailəsi üçün fiziki ölçülərin dəqiqləşdirilməsi 

Müəlliflərin termodinamikaya əsaslanaraq politrop ideal qazın istilik ötürmə xassələrini təsvir etmək üçün aldığı 

yeni istilikkeçirmə tənliyinin dəqiq həllərinin tapılması və onların invariantlıq xassələrinin Li qrupları nəzəriyyəsi 

vasitəsi ilə tədqiqinə həsr olunmuş işlərinin III hissəsində fiziki ölçülər haqda deyilmiş bir qeydə vacib düzəliş 

edilmişdir.    
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Refinement of physical dimensions for one family of exast solutions of the linear heat equation  

Considers an important refinement of the remark about the physical dimensions of a family of exast solutions 

made by us in the final part of the work devoted to the study of the heat equation which describes the behavior of the 

ideal polytropic qas from of the positions of the theory of Lie groups.  
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