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Исследуется численное решение для класса коэффициентно-обратных задач относительно 

параболических уравнений. Предложен подход к их решению, основанный на использовании метода прямых для 

сведения задачи к системе обыкновенных дифференциальных уравнений с неизвестными параметрами. Далее 

используется специальное представление решения полученной краевой задачи относительно линейной системы 

дифференциальных уравнений с краевыми условиями, в результате задача параметрической идентификации 

сводится к решению вспомогательных краевых задач и одной системы алгебраических уравнений. Приводятся 

результаты численных экспериментов и их анализ. 
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1. Введение. В данной работе предлагается подход к численному решению задач 

параметрической идентификации относительно дифференциальных уравнений с частными 

производными. Для идентификации постоянных во времени или по пространственной 

переменной имеются результаты дополнительных экспериментов, в процессе которых 

проводились замеры состояния объекта. 

Отметим, что с подобными обратными задачами приходится сталкиваться на этапе 

параметрической идентификации математических моделей практически для всех 

динамических процессов, для которых предполагается строить системы автоматического или 

автоматизированного управления. В связи с этим различным аспектам исследования 

коэффициентно-обратных задач посвящено большое число публикаций [1-8]. 

Одним из наиболее распространенных подходов к решению обратных задач является 

приведение их к вариационных постановкам с дальнейшем применением методов 

оптимизации и оптимального управления [4, 5]. Применение этого подхода, во-первых, 

связано с проблемами получения формул для градиента функционала вариационной задачи, 

а во-вторых, с необходимостью использования итерационных методов минимизации 

функционала. Ранеее в работах [4, 5] для решения этих задач был использован аппарат 

теории оптимального управления и соответствующие численные итерационные методы 

оптимизации первого порядка. 

Важно отметить, что, в отличие от оптимизационных подходов, в данной работе не 

используется построение каких-либо итерационных процедур или минимизирующих 

последовательностей. В данной работе предлагается численный метод решения задачи, 

основанный на использовании метода прямых для сведения задачи к системе обыкновенных 

дифференциальных уравнений с неизвестными параметрами [8, 9]. Далее используется 

специальное представление решения полученной краевой задачи относительно линейной 

системы дифференциальных уравнений с краевыми условиями, с помощью которого задача 

параметрической идентификации сводится к решению вспомогательных краевых задач и 

одной системы алгебраических уравнений. 

Были проведены многочисленные численные эксперименты на специально построенных 

тестовых задачах с применением предложенных в данной работе формул и схем численного 

решения. 
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2. Постановка задачи. Рассмотрим следующую задачу восстановления коэффициентов 

для параболического уравнения: 

∂𝑢(𝑥, 𝑡)

∂𝑡
= ξ(𝑥, 𝑡)

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
+ 𝜉1(𝑥, 𝑡)

∂𝑢(𝑥, 𝑡)

∂𝑥
− ξ2(𝑥, 𝑡)𝑢(𝑥, 𝑡) + 

+𝐹(𝑥, 𝑡;  𝐶) + 𝑓(𝑥, 𝑡),   (𝑥, 𝑡) ∈ Ω = {(𝑥, 𝑡): 0 < 𝑥 < 𝑎,    0 < 𝑡 ≤ 𝑇}.     (2.1) 

Здесь функция 𝐹(𝑥, 𝑡; 𝐶) имеет один из видов: 

𝐹(𝑥, 𝑡;  𝐶) = ∑ 𝐵𝑖(𝑥, 𝑡)𝐶𝑖(𝑡),                                                        (2.2)

𝑙

𝑖=1

 

𝐹(𝑥, 𝑡;  𝐶) = ∑ 𝐵𝑖(𝑥, 𝑡)𝐶𝑖(𝑥)

𝑙

𝑖=1

,                                                       (2.3) 

где ξ(𝑥, 𝑡) > 0, ξ1(𝑥, 𝑡), ξ2(𝑥, 𝑡), 𝑓(𝑥, 𝑡) ∈ 𝐶2,1(Ω) – заданные непрерывные функции, 𝐵𝑖(𝑥, 𝑡), 

𝑖 = 1,2. . . 𝑙 – заданные непрерывные линейно-независимые функции. Выполнены также 

условия ограниченности в Ω значений функций: 

0 < ξ(𝑥, 𝑡) ≤ 𝑐1;|ξ1(𝑥, 𝑡)|, 0 < ξ2(𝑥, 𝑡) ≤ 𝑐3,  |
∂ξ2(𝑥, 𝑡)

∂𝑥
⁄ | ≤ 𝑐4. 

где 𝑐𝑖, 𝑖 = 1,2,3,4 – ограниченные положительные константы. 

С целью идентификации 𝐶(𝑡) или 𝐶(𝑥) имеются результаты 𝑁 экспериментов, 

проведенных при различных начальных и краевых условиях: 

𝑢𝑗(𝑥, 0) = 𝜑𝑗(𝑥),            0 ≤ 𝑥 ≤ 𝑎,                                         (2.4) 

𝑢𝑗(0, 𝑡) = 𝜓1
𝑗(𝑡),         𝑢𝑗(𝑎, 𝑡) = 𝜓2

𝑗(𝑡),        0 ≤ 𝑡 ≤ 𝑇,                                         (2.5) 

здесь функция 𝜑𝑗(𝑥), 𝜓0
𝑗(𝑡), 𝜓1

𝑗(𝑡) − непрерывны по своим аргументам,  𝑗 = 1,2, . . . , 𝑁. 

При каждом эксперименте проводились наблюдения за состоянием процесса. 

Обозначим через 𝑢𝑗(𝑥, 𝑡) состояние процесса в точке 𝑥 в момент времени 𝑡 при 𝑗-том 

эксперименте, 𝑗 = 1,2, . . . , 𝑁. 

Дополнительные условия, необходимые для определения вектор-функции 𝐶(𝑡), 

полученные по результатам наблюдений за процессом при каждом 𝑗-том эксперименте, 

могут иметь различный вид, что связано с характером проводимых экспериментов и 

результатов наблюдения [2-3]. В частности, пусть в точках 𝑥𝑖 ∈ (0; 𝑎), 𝑖 = 1,2, . . . 𝐿, ведутся 

наблюдения: 

𝑢𝑗(𝑥𝑖, 𝑡) = Φ𝑖
𝑗(𝑡),    𝑖 = 1,2, . . . , 𝐿,       0 ≤ 𝑡 ≤ 𝑇,                                        (2.6) 

где Φ𝑖
𝑗(𝑡), 𝑖 = 1, . . . , 𝑙 – заданные непрерывно дифференцируемые функции. 

А для определения вектор-функции 𝐶(𝑥) = (𝐶1(𝑥), 𝐶2(𝑥), . . . , 𝐶𝑙(𝑥))∗ дополнительные 

условия являются результатом наблюдения за состоянием заданных моментов времени, 𝑡𝑗 ∈
(0, 𝑇], 𝑖 = 1, . . . , 𝐿: 

𝑢𝑗(𝑥, 𝑡𝑖) = Φ𝑖
𝑗(𝑥),    𝑖 = 1, … , 𝐿,       0 ≤ 𝑥 ≤ 𝑎.                             (2.7. ) 

Здесь Φ𝑖
𝑗(𝑥),    𝑖 = 1,2, . . . , 𝑙 – заданные дважды непрерывно дифференцируемые 

функции. 

Предполагается, что функции 𝜑0
𝑗
(𝑥), 𝜑1

𝑗
(𝑥) 𝜓1

𝑗
(𝑡), 𝜓2

𝑗
(𝑡) удовлетворяют условиям 

согласования: 
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𝜑0
𝑗(0) =  𝜓1

𝑗(0),     𝜑0
𝑗(𝑎) = 𝜓2

𝑗(0), 𝜑0
𝑗(0) = Φ𝑖

𝑗(0). 

Задача состоит в нахождении непрерывной вектор-функции 𝐶(𝑡), удовлетворяющей 

условиям (2.1), (2.2), (2.4)-(2.6) (задача А) или вектор-функции 𝐶(𝑥) в случае условий (2.1), 

(2.3), (2.4)-(2.5), (2.7) (задача В). 

Рассматриваемые задачи идентификации исследовались многими авторами [3–7]. Были 

получены необходимые условия существования и единственности решения [6]. 

Предложенные в работе [4, 5] методы решения этой задачи использовали сведение ее к 

задаче оптимального управления, для решения которой применялись итерационные методы. 

В работе [7] использовалось сведение задачи к интегральному уравнению, решение которого 

представляет вычислительную сложность. Ниже предлагается использовать приведение 

задачи (2.1)-(2.5) к задаче параметрической идентификации относительно системы 

обыкновенных дифференциальных уравнений. 

3. Метод решения. Предлагаемый численный метод решения задач A и В основан на 

использовании метода прямых для сведения задачи к системе обыкновенных 

дифференциальных уравнений с неизвестными параметрами [8-9]. 

Решение задачи А. С целью приведения задачи А к обыкновенной системе 

дифференциальных уравнений используем метод прямых. В области Ω проведем прямые 𝑡 =
𝑡𝑘 = 𝑘τ, 𝑘 = 0,1, . . . , 𝑀, τ = 𝑇 𝑀⁄ .  

Производную 
∂𝑢(𝑥,𝑡)

∂𝑡
| 𝑡=𝑡𝑘

 в (2.1) аппроксимируем разностным отношением 

∂𝑢(𝑥, 𝑡)

∂𝑡
| 𝑡=𝑡𝑘

=
𝑢(𝑥, 𝑡𝑘) − 𝑢(𝑥, 𝑡𝑘−1)

τ
+ 𝑂(τ), 𝑘 = 1,2, . . . , 𝑀, 

и далее используем обозначения: 

𝑈(𝑘)(𝑥) = 𝑢(𝑥, 𝑡𝑘), 𝐶(𝑘) = 𝐶(𝑡𝑘), 𝜓1
(𝑘)

= 𝜓1(𝑡𝑘), 𝜓2
(𝑘)

= 𝜓2(𝑡𝑘), 

 𝐵̃(𝑘)(𝑥) = −
𝐵(𝑥, 𝑡𝑘)

𝜉(𝑥, 𝑡𝑘)
, 𝜉1

(𝑘)(𝑥) = −
𝜉1(𝑥, 𝑡𝑘)

𝜉(𝑥, 𝑡𝑘)
,  

𝜉2
(𝑘)(𝑥) = − (

𝜉2(𝑥, 𝑡𝑘)

𝜉(𝑥, 𝑡𝑘)
−

1

𝜏 ⋅ 𝜉(𝑥, 𝑡𝑘)
),   𝑓(𝑘)(𝑥) = − (

𝑓(𝑥, 𝑡𝑘)

𝜉(𝑥, 𝑡𝑘)
+

𝑈(𝑘−1)(𝑥)

𝜏 ⋅ 𝜉(𝑥, 𝑡𝑘)
). 

В результате получим уравнения второго порядка с обыкновенными производными: 

𝑑2𝑈(𝑘)(𝑥)

𝑑𝑥2
= ξ̃1

(𝑘)
(𝑥)

𝑑𝑈(𝑘)(𝑥)

𝑑𝑥
+ ξ̃2

(𝑘)
(𝑥) 𝑈(𝑘)(𝑥) + ∑ 𝐵̃𝑖

(𝑘)
(𝑥)𝐶𝑖

(𝑘)

𝑙

𝑖=1

+ 

+𝑓(𝑘)(𝑥),    𝑘 = 1,2, . . . 𝑀 , 𝑈(0)(𝑥) = φ(𝑥).                               (3.1) 

Из (1.5) имеем следующие условия:  

𝑈(𝑘)(0) = 𝜓1
(𝑘)

, 𝑈(𝑘)(𝑎) = 𝜓2
(𝑘)

,    𝑘 = 1,2, . . . 𝑀,                     (3.2) 

а дополнительные условия имеют вид  

𝑈(𝑘)𝑗(𝑥𝑖) = Φ𝑖
(𝑘)𝑗

,    𝑖 = 1,2, … , 𝑙,                                             (3.3) 

Уравнения (3.1) при каждом 𝑘, 𝑘 = 1,2, . . . , 𝑀, приведем к системе двух 

дифференциальных уравнений первого порядка: 
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𝑑𝑈1
(𝑘)

(𝑥)

𝑑𝑥
= 𝑈2

(𝑘)
(𝑥),

𝑑𝑈2
(𝑘)

(𝑥)

𝑑𝑥
= ξ̃2

(𝑘)(𝑥) 𝑈1
(𝑘)(𝑥) + ξ̃1

(𝑘)(𝑥)𝑈2
(𝑘)(𝑥) + ∑ 𝐵̃𝑖

(𝑘)(𝑥)𝐶(𝑘)

𝑙

𝑖=1

+ 𝑓(𝑘)(𝑥),   𝑘 = 1,2, . . . 𝑀, (3.4)
 

𝑈1
(𝑘)(0) = 𝜓1

(𝑘)
, 𝑈1

(𝑘)(𝑎) = 𝜓2
(𝑘)

,        𝑘 = 1,2, . . . 𝑀.                                                                (3.5) 

Задачи (3.4), (3.5), (3.3) при каждом 𝑘, 𝑘 = 1,2, . . . , 𝑀, запишем в следующем виде:  

𝑑𝑈(𝑥)

𝑑𝑥
= 𝐴(𝑥)𝑈(𝑥) + 𝐵(𝑥)𝐶 + 𝐹(𝑥), 𝑥 ∈ (0, 𝑎 ],                    (3.6) 

с краевыми условиями 

𝛼̃𝑈(0) = 𝜓1,        𝛽𝑈(𝑎) = 𝜓2,                                         (3.7) 

а дополнительные условия имеют вид  

γ̃𝑈(𝑥𝑖) = Φ𝑖,    𝑖 = 1,2, . . . , 𝐿.                                              (3.8) 

Здесь 𝑈(𝑥) ∈ 𝑅2 – фазовое состояние системы; 𝐶 = (𝐶1, 𝐶2, . . . , 𝐶𝑙)
∗ ∈ 𝑅𝑙 – искомые 

параметры; 𝐴(𝑥), 𝐵(𝑥), 𝐹(𝑥) – заданные непрерывные матричные функции по 𝑥, 𝑥 ∈ (0, 𝑎 ] 
соответственно размерности (2 × 2), (2 × 𝑙), (2 × 1); 𝛼̃, 𝛽, 𝛾 ̃– заданные матрицы 

размерности (1 × 2);  * – знак транспонирования. 

Решение задачи (3.6), (3.7) –𝑈𝑗(𝑥) для каждого 𝑗-того эксперимента будем искать в 

виде: 

𝑈𝑗(𝑥) = 𝑈0𝑗(𝑥) + ∑ 𝑈𝑖𝑗(𝑥)

𝑙

𝑖=1

𝐶𝑖, 𝑥 ∈ (0, 𝑎𝑗], 𝑗 = 1,2, . . . , 𝑁,          (3.9) 

где пока произвольные вектор-функция 𝑈0𝑗(𝑥) и 𝑈𝑖𝑗(𝑡), должны удовлетворять условиям 

𝛼̃𝑈0𝑗(0) = 𝜓1,        𝛽𝑈0𝑗(𝑎) = 𝜓2,    𝛼̃𝑈𝑖𝑗(0) = 0,        𝛽𝑈𝑖𝑗(𝑎) = 0,     (3.10) 

Несложно проверить, что в этом случае 𝑈𝑗(𝑥) из (3.9) удовлетворяет условиям (3.7) для 

всех  𝑗 = 1,2, . . . , 𝑁 и произвольных 𝐶𝑖, 𝑖 = 1,2. . . . , 𝑙.  

Теорема 1. Если функции 𝑈𝑖 𝑗(𝑥), 𝑖 = 0,1, . . . , 𝑙 являются при  𝑥 ∈ (0, 𝑎𝑗] решениями 

следующих задач: 

𝑑𝑈0𝑗(𝑥)

𝑑𝑥
= 𝐴(𝑥)𝑈0𝑗(𝑥) + 𝐹(𝑥),      𝛼̃𝑈0𝑗(0) = 𝜓1,        𝛽𝑈0𝑗(𝑎) = 𝜓2,              (3.11) 

𝑑𝑈𝑖𝑗(𝑥)

𝑑𝑥
= 𝐴(𝑥)𝑈𝑖𝑗(𝑥) +  𝐵𝑖(𝑥), 𝛼̃𝑈𝑖𝑗(0) = 0,       𝛽𝑈𝑖𝑗(𝑎) = 0,                  (3.12) 

тогда функция 𝑈𝑗(𝑥), определенная формулой (3.9), удовлетворяет условиям (3.6), (3.7) для 

произвольных значений вектора 𝐶, 𝑗 = 1,2, . . . , 𝑁. 

Доказательство. Действительно, продифференцировав (3.9) и подставив в (3.6), после 

несложных преобразований получим: 
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[
𝑑𝑈0𝑗(𝑥)

𝑑𝑥
= −𝐴(𝑥)𝑈0𝑗(𝑥) − 𝐹(𝑥)] +   

+ ∑ [
𝑑𝑈𝑖𝑗(𝑥)

𝑑𝑥
− 𝐴(𝑥)𝑈𝑖𝑗(𝑥) − 𝐵𝑖(𝑥)]

𝑙

𝑖=1

𝐶𝑖 = 0,   𝑥 ∈ (0, 𝑎𝑗],   𝑗 = 1,2, . . . , 𝑁. 

Учитывая произвольность функций 𝑈0𝑗(𝑥) и 𝑈𝑖𝑗(𝑥), 𝑖 = 1,2. . . . , 𝑙, требуя от них 

равенства нулю выражений, стоящих в квадратных скобках, получим, что эти функции 

должны быть решениями задач (3.11), (3.12). 

Для всех видов измерения будем предполагать, что проводимые эксперименты 

независимы, причем выполнено условие 𝐿 ≥ 𝑙. Дополнительные условия (3.8) называют 

условиями переопределения [2-3]. 

Используя значения полученных решений задач (3.11), (3.12) в точках, которые 

участвуют в проводимых измерениях вида (3.8), получим систему 𝐿 линейных 

алгебраических уравнений относительно вектора 𝐶 ∈ 𝑅𝑙, которую в общем случае запишем 

так  

𝑄𝐶 = 𝐺.                                                                        (3.13) 

Здесь матрица 𝑄 = ((𝑞𝑖𝑗)), 𝑖 = 1,2, . . . , 𝐿,   𝑗 = 1,2, . . . , 𝑙, вектор 𝐺 = (𝑔1, 𝑔2, . . . , 𝑔𝐿)∗ 

определяются видом и результатами проводимых наблюдений. В случае, если 𝐿 = 𝑙, то 

решение определяется непосредственно из (3.13): 𝐶 = 𝑄−1𝐺. В случае, если 𝐿 > 𝑙 под 

решением (3.13) будем понимать вектор: 

𝐶 = (𝑄∗Q)−1𝑄∗𝐺 ,                                                            (3.14)  

называемый нормальным решением переопределенной системы [3]. 

Решение задачи В. В области Ω проведем прямые 𝑥 = 𝑥𝑘 = 𝑘ℎ, 𝑘 = 0,1, . . . , 𝑀, ℎ =
𝑎 𝑀⁄ . 

Введем обозначения  

𝑈(𝑘)(𝑡) = 𝑢(𝑥𝑘, 𝑡), 𝐵(𝑘)(𝑡) = 𝐵(𝑥𝑘, 𝑡), 

  φ𝑘 = φ(𝑥𝑘),   𝐶(𝑘) = 𝐶(𝑥𝑘), ξ(𝑘)(𝑡) = ξ(𝑥𝑘, 𝑡),  

ξ1
(𝑘)(𝑡) = ξ1(𝑥𝑘, 𝑡),     ξ2

(𝑘)(𝑡) = ξ2(𝑥𝑘, 𝑡),   𝑓(𝑘)(𝑡) = 𝑓(𝑥𝑘, 𝑡), 𝑘 = 1,2, . . . , 𝑀 − 1. 

Аппроксимируя в (2.1) производные 
∂2𝑢(𝑥,𝑡)

∂𝑥2
| 𝑥=𝑥𝑘

 и 
∂𝑢(𝑥,𝑡)

∂𝑥
| 𝑥=𝑥𝑘

 разностными 

соотношениями 

∂𝑢(𝑥, 𝑡)

∂𝑥
| 𝑥=𝑥𝑘

=
𝑈(𝑘+1)(𝑡) − 𝑈(𝑘−1)(𝑡)

2ℎ
+ 𝑂(ℎ2),    𝑘 = 1,2, , . . . , 𝑀 − 1, 

∂2𝑢(𝑥, 𝑡)

∂𝑥2
| 𝑥=𝑥𝑘

=
𝑈(𝑘+1)(𝑡) − 2𝑈(𝑘)(𝑡) + 𝑈(𝑘−1)(𝑡)

ℎ2
+ 𝑂(ℎ2),      𝑘 = 1,2, . . . , 𝑀 − 1, 

получим систему дифференциальных уравнений с обыкновенными производными (𝑀 − 1)-

ого порядка: 

𝑑𝑈(𝑘)(𝑡)

𝑑𝑡
=

ξ(𝑘)(𝑡)

ℎ2
(𝑈(𝑘+1)(𝑡) − 2𝑈(𝑘)(𝑡) + 𝑈(𝑘−1)(𝑡)) +

ξ1
(𝑘)(𝑡)

2ℎ
(𝑈(𝑘+1)(𝑡) − 𝑈(𝑘−1)(𝑡)) + 



Transaction of Azerbaijan National Academy of Sciences, Series of Physical-Technical and  

Mathematical Sciences: Informatics and Control Problems, Vol. XXXVIII, No.3, 2018 

www.icp.az/2018/3-03.pdf 

 

23 

+ξ2
(𝑘)(𝑡)𝑈(𝑘)(𝑡) + ∑ 𝐵𝑖

(𝑘)(𝑡)𝐶𝑖
(𝑘)

𝑙

𝑖=1

+ 𝑓(𝑘)(𝑡),    𝑘 = 1,2, … , 𝑀 − 1, 

𝑈(0)(𝑡) = 𝜓1(𝑡),   𝑈(𝑀)(𝑡) = 𝜓2(𝑡),   𝑡 ∈ (0; 𝑇],                                (3.15) 
с условиями 

𝑈(𝑘)(0) = φ(𝑘),   𝑘 = 1,2, . . . , 𝑀 − 1.                                             (3.16) 

После некоторых обозначений получим задачу: 

𝑑𝑈(𝑘)(𝑡)

𝑑𝑡
= 𝐴̃(𝑡)𝑈(𝑘)(𝑡) + 𝐵(𝑘)(𝑡)𝐶 + 𝐹(𝑡),    𝑘 = 1,2, . . . , 𝑀 − 1,                     (3.17) 

𝑈(𝑘)(0) = φ(𝑘).                                                                                                                 (3.18) 

Дополнительные условия (2.7) примут вид  

𝑈(𝑘)𝑗(𝑡𝑖) = Φ𝑖
(𝑘)𝑗

,    𝑖 = 1,2, . . . , 𝑙.                                    (3.19) 

4. Результаты численных экспериментов. Были проведены многочисленные 

численные эксперименты на тестовых задачах с применением предложенных в данной 

работе формул и схем численного решения. Результаты экспериментов показали 

достаточную практическую эффективность описанного подхода. 

Задача 1. Рассмотрим следующую задачу параметрической идентификации для 

параболического уравнения (4.1): 

       
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
=

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
+ (2𝑥 + 𝑡)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
− 2𝑢(𝑥, 𝑡) +

                    
 

   + (𝑥 + 𝑡)𝐶1(𝑡) + (2𝑥 + 3𝑡)𝐶2(𝑡) + 𝜋𝑒−2𝑡(𝜋𝑠𝑖𝑛(𝜋𝑥) − (𝑥 + 2𝑡)𝑐𝑜𝑠(𝜋𝑥)) + 

+(𝑥 + 𝑡)(1.5𝑒−2𝑡 + 0.5) −  0.25(2x + 3)𝑒3𝑡, 
  (𝑥, 𝑡) ∈ Ω = {(𝑥, 𝑡): 0 < 𝑥 < 1,    0 < 𝑡 ≤ 1}.                                (4.1) 

Здесь 𝑢(𝑥, 𝑡) – состояние процесса, 𝐶(𝑡) ∈ 𝑅2– идентифицируемый вектор параметров, 

причем функция 𝑢(𝑥, 𝑡) = (𝑒−2𝑡sin(π𝑥))  и вектор-функция 𝐶(𝑡) = (
3

2
𝑒−2𝑡 +

1

2
;   

1

4
𝑒3𝑡  ) ∗, как 

несложно проверить, удовлетворяют уравнениям (4.1).  

Для идентификации вектора 𝐶(𝑡) проведен один эксперимент (𝑁 = 1) при начально-

краевых условиях: 

𝑢(𝑥, 0) = sin (π𝑥),      0 ≤ 𝑥 ≤ 1,

𝑢(0, 𝑡) = 0,         𝑢(1, 𝑡) = 0,        0 ≤ 𝑡 ≤ 1,                         (4.2)
 

при котором проводились наблюдения в двух точках 𝑥 = 0.25 и 𝑥 = 0.5 (т.е. 𝐿 = 𝑙 = 2) и в 

результате были получены дополнительные разделенные многоточечные условия вида (2.6): 

𝑢(0.25, 𝑡) =
√2 𝑒−2𝑡

2
,    𝑢(0.5, 𝑡) = 𝑒−2𝑡,      0 ≤ 𝑡 ≤ 1.                              (4.3) 

Для сведения задачи (4.1), (4.2) к задаче (3.6)-(3.7) методом прямых при проведении 

численных экспериментов использовались различные значения шага τ (т.е. число прямых). 

Решения для τ ∈ [0.02; 0.04] практически не различались и были достаточно близки к 

точному решению. В таблице 1 приведены результаты, полученные при τ = 0.04, т.е. 𝑀 =
25. Для решения вспомогательных задач Коши использовался метод Рунге-Кутты четвертого 

порядка, результаты приведены при величине шага ℎ = 0.005. 
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В табл.1 приведены точные и полученные значения параметров 𝐶(𝑡) при χ = 0; 

0.01;   0.03, что соответствует замерам соответственно без наличия помех, при помехах –1% 

и 3% от измеряемой величины в условиях (4.3).  
Таблица 1 

Точные и полученные решения задачи 1 при разных уровнях помех 
 

 Точные χ = 0 χ = 0.01 χ = 0.03 

𝑡 𝐶1(𝑡) 𝐶2(𝑡) 𝐶1(𝑡) 𝐶2(𝑡) 𝐶1(𝑡) 𝐶2(𝑡) 𝐶1(𝑡) 𝐶2(𝑡) 

0.02 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 
 

1.9412 

1.7281 

1.5055 

1.3232 

1.1740 

1.0518 

0.9518 

0.8699 

0.8028 

0.7479 

0.7030 
 

0.5309 

0.6749 

0.9110 

1.2298 

1.6600 

2.2408 

3.0248 

4.0830 

5.5116 

7.4387 

10.0427 
 

1.9318 

1.7203 

1.4994 

1.3185 

1.1702 

1.0489 

0.9495 

0.8681 

0.8014 

0.7468 

0.7021 
 

0.5308 

0.6749 

0.9110 

1.2297 

1.6600 

2.2408 

3.0248 

4.0830 

5.5115 

7.4390 

10.0427 
 

1.9473 

1.9166 

1.6183 

1.2451 

1.0840 

1.0147 

1.0067 

0.8560 

0.8515 

0.7563 

0.6816 
 

0.5289 

0.6497 

0.8920 

1.2328 

1.6718 

2.2489 

3.0187 

4.0829 

5.5067 

7.4367 

10.0450 
 

1.9131 

2.6546 

1.7719 

1.1944 

1.4485 

0.8406 

0.9551 

1.0101 

0.9099 

0.7168 

0.6859 
 

0.5331 

0.5953 

0.8612 

1.2329 

1.6277 

2.2613 

3.0331 

4.0706 

5.4980 

7.4493 

10.0469 
 

 

Задача 2. Пусть относительно процесса (4.1), (4.2) дополнительно к наблюдениям (4.3) 

проводились наблюдения и в точках 𝑥 = 0.125 и 𝑥 = 0.75:   

𝑢(0.125, 𝑡) = 𝑒−2𝑡sin(0.125π)  ,   𝑢(0.75, 𝑡) = 𝑒−2𝑡sin(0.75π) ,   0 ≤ 𝑡 ≤ 1,     (4.4) 

т.е. в данной задаче 𝑁 = 1, 𝐿 = 4, 𝑙 = 2,   𝐿 > 𝑙. 
Параметры численных методов были аналогичны параметрам, используемым в задаче 

1. Ясно, что точные решения задач 1 и 2 совпадают. В табл.2 приведены полученные 

результаты решения задачи 2 при различных уровнях помех на измеряемые величины (4.3), 

(4.4) состояния процесса. 

Таблица 2 

Полученное решение задачи 2 при разных уровнях помех 
 

 χ = 0 χ = 0.01 χ = 0.03 

𝑡 𝐶1(𝑡) 𝐶2(𝑡) 𝐶1(𝑡) 𝐶2(𝑡) 𝐶1(𝑡) 𝐶2(𝑡) 

0.02 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 
 

1.9318 

1.7203 

1.4994 

1.3185 

1.1702 

1.0489 

0.9495 

0.8681 

0.8014 

0.7468 

0.7021 
 

  0.5308 

  0.6749 

  0.9110 

  1.2297 

  1.6600 

  2.2408 

  3.0248 

  4.0830 

  5.5115 

  7.4390 

10.0427 
 

1.9365 

1.7016 

1.4963 

1.3454 

1.2241 

1.0121 

0.9642 

0.8584 

0.7890 

0.7335 

0.7065 
 

0.5302 

0.6759 

0.9133 

1.2294 

1.6525 

2.2452 

3.0240 

4.0832 

5.5125 

7.4413 

10.0422 
 

1.9323 

1.7523 

1.3044 

1.2478 

1.0826 

1.1377 

1.0009 

0.8248 

0.7467 

0.7143 

0.7399 
 

0.5306 

0.6554 

0.9267 

1.2434 

1.6714 

2.2299 

3.0171 

4.0864 

5.5178 

7.4435 

10.0384 
 

 

Были проведены многочисленные другие численные эксперименты, приведение 

результатов которых заняло бы много места. Отметим лишь, что эти эксперименты показали 
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возможность получения решения задач предлагаемым методом с требуемой высокой 

степенью точности и достаточно высокую его устойчивость к помехам в исходных данных 

задачи.  

Из результатов, приведенных в таблицах следует, что предлагаемый подход позволяет 

достаточно точно определять значения идентифицируемых параметров, если дополнительная 

информация о состоянии процесса известна точно. 

В случае наличия помех при проведении замеров, как и следовало ожидать. 

полученные значения параметров точно соответствуют полученной искаженной 

информации, а следовательно не соответствуют искомым значениям. С целью более точного 

определения искомых значений идентифицируемых параметров необходимо увеличение 

точности замеров или количества информации, т.е. точек или моментов времени замера 

параметров состояния процесса. 

5. Выводы. В статье исследовано численное решение коэффициентно-обратных задач, 

описываемых уравнениями с частными производными, в которых идентифицируемые 

коэффициенты зависят лишь от одной переменной: временной или пространственной. Для 

идентификации коэффициентов проводятся дополнительные эксперименты, результаты 

наблюдений за которыми могут иметь различный характер. Предложен подход к решению 

рассматриваемых задач, основанный на использовании метода прямых для сведения задачи к 

системе обыкновенных дифференциальных уравнений с неизвестными параметрами. 

Используется специальное представление решения краевой задачи относительно исходной 

линейной системы дифференциальных уравнений с нелокальными условиями, с помощью 

которого задача параметрической идентификации сводится к решению вспомогательных 

краевых задач и одной системы алгебраических уравнений. Были проведены 

многочисленные численные эксперименты на специально построенных тестовых задачах с 

применением предложенных в данной работе формул и схем численного решения. 

Результаты экспериментов показали достаточно высокую эффективность для практического 

применения описанного подхода. 
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V.M. Abdullayev  

Parabolik tip tənliklər üçün əmsal-tərs məsələnin ədədi həllinə yanaşma  

Parabolik tənlik üçün bir sinif əmsal-tərs məsələsinin ədədi həlli tədqiq olunmuşdur. Düz xətlər üsulunun tətbiqi 

ilə məsələ naməlum parametrlərdən asılı adi diferensial tənliklər sisteminə gətirilmiş, onun həlli üçün yanaşma təklif 

olunmuşdur. Yanaşmada ilkin diferensial tənliklər sisteminə nəzərən sərhəd məsələsinin həlli üçün xüsusi ayrılışdan 

istifadə olunur. Nəticədə parametrik identifikasiya məsələsinin həlli köməkçi sərhəd məsələsinin və cəbri tənliklər 

sisteminin həllinə gətirilir. Ədədi eksperimentlərin nəticələri və analizi verilmişdir. 

Açar sözlər: tərs məsələ, düz xətlər üsulu, parabolik tip tənlik, parametrik identifikasiya 
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Approach to numerical solution to coefficient-inverse problems for parabolic equations 

In the paper, we investigate numerical solution to coefficient inverse problems with respect to a parabolic type 

equation. We propose an approach to the solution to the considered problems, which is based on the use of the method 

of lines for reducing the initial problem to a system of ordinary differential equations with unknown parameters. Next 

we use a special representation of the solution to the derived boundary-value problem with respect to a linear system of 

differential equations with boundary conditions, with the help of which the parametric identification problem is reduced 

to the solution to auxiliary boundary-value problems and to a system of algebraic equations. We give the results of 

numerical experiments and carry out their analysis. 
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