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МЕТОДЫ ПРИБЛИЖЁННОГО РЕШЕНИЯ ЗАДАЧ ЧАСТИЧНО-БУЛЕВОГО  

ПРОГРАММИРОВАНИЯ С ИНТЕРВАЛЬНЫМИ ДАННЫМИ 

 
Рассматривается задача частично-Булевого программирования с интервальными данными. Введены 

понятия допустимого, оптимистического, пессимистического, субоптимистического и субпессимистического 

решений этой задачи. Разработаны методы построения субоптимистического и субпессимистического 

решений. Эти методы основаны на некоторой экономической интерпретации рассмотренной задачи. 

Проведены многочисленные вычислительные эксперименты над случайными задачами различной размерности 

и определены оценки погрешностей этих решений от оптимального. Эксперименты еще раз подтверждают 

высокую эффективность разработанных методов. 
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1. Введение. Рассматривается следующая задача 

    ∑[𝑐𝑗, 𝑐𝑗]𝑥𝑗  + ∑ [𝑐𝑗, 𝑐𝑗]𝑥𝑗  → 𝑚𝑎𝑥                                           (1.1)

𝑁

𝑗=𝑛+1

𝑛

𝑗=1

 

 ∑[𝑎𝑖𝑗, 𝑎𝑖𝑗]𝑥𝑗 + ∑ [𝑎𝑖𝑗, 𝑎𝑖𝑗]𝑥𝑗 ≤ [𝑏𝑖, 𝑏𝑖] ,

𝑁

𝑗=n+1

(𝑖 = 1, 𝑚),

𝑛

𝑗=1

                               (1.2) 

0 ≤ 𝑥𝑗 ≤ 1, (𝑗 = 1, 𝑁),                                                          (1.3) 

𝑥𝑗 = 1⋁0, (𝑗 = 1, 𝑛), (𝑛 ≤ 𝑁).                                                        (1.4) 

Здесь предполагается, что 𝑐𝑗 > 0, 𝑐𝑗 > 0, 𝑎𝑖𝑗 ≥ 0, 𝑎𝑖𝑗 ≥ 0 , 𝑏𝑖 > 0, 𝑏𝑖 > 0 (𝑖 = 1, 𝑚 , 𝑗 =

1, 𝑁) − заданные целые числа. 

Отметим следующие естественные условия для коэффициентов задачи (1.1)-(1.4). Во-

первых, для каждого 𝑖, (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ) должны удовлетворяться условия 

            ∑ 𝑎𝑖𝑗 > 𝑏𝑖,

𝑁

𝑗=1

(𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ). 

Наоборот, если для всех 𝑖 эти условия не выполняются, то решение 𝑋 = (1,1,1, … ,1) 

будет удовлетворять системе (1.2)-(1.4) и она будет оптимальным решением. С другой 

стороны, если для некоторой фиксированной 𝑖∗ выполняется условие 

            ∑ 𝑎𝑖∗𝑗  ≤ 𝑏𝑖∗
,

𝑁

𝑗=1

(𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ), 

то неравенство 𝑖∗ не является ограничением и его исключаем из системы (1.2). Мы 

предполагаем, что вышеуказанные естественные условия выполняются для задачи (1.1)-(1.4). 

Эта задача называется задачей частично-Булевого программирования с интервальными 

данными или просто интервальная задача частично-Булевого программирования. 

Рассмотренная задача (1.1)-(1.4) является обобщением задач Булевого программирования, 

интервальных задач Булевого программирования и задач линейного программирования. 

Поскольку в случае 𝑛 = 0 получается задача линейного программирования с интервальными 

данными, при 𝑛 = 𝑁 получается интервальная задача Булевого программирования, в случае 
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𝑐𝑗 = 𝑐𝑗 , 𝑎𝑖𝑗 = 𝑎𝑖𝑗, 𝑏𝑖 = 𝑏𝑖(𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ , 𝑗 = 1, 𝑁) получается общеизвестная задача Булевого или 

частично-Булевого программирования. Необходимо отметить, что поскольку все частные 

случаи задачи (1.1)-(1.4) входят в класс NP-полных, то эта задача также входит в класс NP-

полных, т.е. трудно-решаемых [1, с.123; 2, с.78]. Некоторые классы задач целочисленного 

программирования с интервальными данными исследованы в работах [3-9 и др.]. 

Насколько нам известно, интервальная задача частично-Булевого программирования 

ещё не исследована.  

В данной работе для задачи (1.1)-(1.4) введены новые понятия: допустимое, 

оптимистическое, пессимистическое, субоптимистическое и субпессимистическое решения и 

разработаны методы их решения.  

2. Постановка задачи. В начале для задач (1.1)-(1.4) зададим некоторую экономичес- 

кую интерпретацию. Пусть имеется 𝑁 объектов. Из них 𝑛 типов (𝑛 ≤ 𝑁) объектов можно 

использовать либо игнорировать, а для остальных 𝑁 − 𝑛 объектов можно использовать в 

некоторой степени. Если j-ый объект (𝑗 = 1, 𝑁) выбирается для использования (или 

частичного использования), то возможные затраты входят в интервал [𝑎𝑖𝑗, 𝑎𝑖𝑗] (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 =

1, 𝑁)
 

при этом прибыль принадлежит интервалу [𝑐𝑗, 𝑐𝑗] (𝑗 = 1, 𝑁). Допустим, что для 

использования этих объектов выделены ресурсы, входящие в интервал [𝑏𝑖, 𝑏𝑖] (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ). 

Требуется выбирать для использования (или частичного использования) такие объекты, 

суммарные затраты которых не превышали бы выделенных ресурсов, входящих в интервал 

[𝑏𝑖, 𝑏𝑖] (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ), а общая прибыль была максимальной. Очевидно, что принимая 

переменные  

𝑥𝑗 = {
1,   если 𝑗­ый объект выбирается,

0,   в противном случае (𝑗 = 1, 𝑛) 
 

и 0 ≤ 𝑥𝑗 ≤ 1 (𝑗 = 𝑛 + 1, 𝑁), то математическая модель задачи будет в виде (1.1)-(1.4). 

Отметим, что такие задачи часто встречаются в таких областях поизводства, где 

выпускаются товары, часть которых должны быть штучными. 

3. Теоретическое обоснование метода. Сначала введём некоторые понятия, 

обобщающие определения, введённые авторами в работе [10]. 

Определение 1. 𝑁-мерный вектор 𝑋 = (𝑥1, … , 𝑥𝑁), удовлетворяющий системе условий 

(1.2)-(1.4) для ∀ 𝑎𝑖𝑗 ∈ [𝑎𝑖𝑗, 𝑎𝑖𝑗] и ∀𝑏𝑖 ∈ [𝑏𝑖, 𝑏𝑖], (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁) называется допустимым 

решением задачи (1.1)-(1.4). 

Из этого определения непосредственно следует, что понятия оптимального решения и 

оптимального значения функции (1.1) должны иметь другой смысл в отличие от известных. 

Потому, что необходимо обеспечивать не превышение суммы некоторых интервалов от 

заданного конкретного интервала [𝑏𝑖, 𝑏𝑖] и при этом достичь максимальности суммы 

некоторых других интервалов. С этой целью введём несколько следующих определений. 

Определение 2. Оптимистическим решением задачи (1.1)-(1.4) назовём такое 

допустимое решение 𝑋𝑜𝑝 = (𝑥1
𝑜𝑝, 𝑥2

𝑜𝑝, … , 𝑥𝑁
𝑜𝑝), которое удовлетворяет неравенствам 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑜𝑝𝑁

𝑗=1 ≤ 𝑏𝑖, для ∀ 𝑏𝑖 ∈ [𝑏𝑖, 𝑏𝑖], ( 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁) и при этом значение функции 𝑓𝑜𝑝 =

∑ 𝑐𝑗𝑥𝑗
𝑜𝑝𝑁

𝑗=1  будет максимальным. 

Определение 3. Пессимистическим решением задачи (1.1)-(1.4) назовём такое 

допустимое решение 𝑋𝑝 = (𝑥1
𝑝, 𝑥2

𝑝 , … , 𝑥𝑁
𝑝), которое удовлетворяет соотношениям  

∑ 𝑎𝑖𝑗𝑥𝑗
𝑝𝑁

𝑗=1 ≤ 𝑏𝑖, для ∀ 𝑏𝑖 ∈ [𝑏𝑖, 𝑏𝑖], (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁) и при этом значение функции 𝑓𝑝 =

∑ 𝑐𝑗𝑥𝑗
𝑝𝑁

𝑗=1  будет максимальным.
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Из этих определений видно, что для нахождения оптимистического и пессимистичес- 

кого решений задачи (1.1)-(1.4) необходимо решить некоторую задачу частично-Булевого 

программирования, которая входит в класс NP-полных. А это требует достаточно большого 

времени для задач большой размерности. Поэтому мы ввели следующие понятия: 

субоптимистического и субпессимистического, т.е. приближённого решений задачи (1.1)-

(1.4) и разработали алгоритмы их нахождения. 

Определение 4. Субоптимистическим решением задачи (1.1)-(1.4) назовём такое 

допустимое решение 𝑋𝑠𝑜 = (𝑥1
𝑠𝑜 , 𝑥2

𝑠𝑜 , … , 𝑥𝑁
𝑠𝑜), которое удовлетворяет условиям ∑ 𝑎𝑖𝑗𝑥𝑗

𝑠𝑜𝑁
𝑗=1 ≤

𝑏𝑖, для ∀ 𝑏𝑖 ∈ [𝑏𝑖, 𝑏𝑖], (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁)  и при этом значение функции 𝑓𝑠𝑜 = ∑ 𝑐𝑗𝑥𝑗
𝑠𝑜𝑁

𝑗=1  

будет принимать большое значение. 

Определение 5. Субпессимистическим решением задачи (1.1)-(1.4) назовём такое 

допустимое решение 𝑋𝑠𝑝 = (𝑥1
𝑠𝑝 , 𝑥2

𝑠𝑝 , … , 𝑥𝑁
𝑠𝑝), которое удовлетворяет соотношениям 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑠𝑝𝑁

𝑗=1 ≤ 𝑏𝑖 для ∀  𝑏𝑖 ∈ [𝑏𝑖, 𝑏𝑖], (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁) и при этом значение функции 𝑓𝑠𝑝 =

∑ 𝑐𝑗𝑥𝑗
𝑠𝑝𝑁

𝑗=1  будет принимать большое значение. 

Отметим, что вышеуказанные определения являются обобщением определений, 

введённых в работе [11]. 

Используя вышеуказанную экономическую интерпретацию задачи (1.1)-(1.4) 

введённую в пункте 2, выведем критерии выбора неизвестных для присвоения конкретных 

значений. Пусть j-ый объект (𝑗 = 1, 𝑁) выбирается для использования (или частичного 

использования). Тогда, необходимые расходы должны входить в интервал [𝑎𝑖𝑗, 𝑎𝑖𝑗](𝑖 =

1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁). В этом случае полученная прибыль входит в заданный интервал [𝑐𝑗, 𝑐𝑗](𝑗 =

1, 𝑁).Очевидно, что прибыль на каждую единицу расхода, входящая в интервал [𝑎𝑖𝑗, 𝑎𝑖𝑗](𝑖 =

1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁), будет составлять как минимум  

min
𝑖

[𝑐𝑗, 𝑐𝑗]

[𝑎𝑖𝑗, 𝑎𝑖𝑗]
=

[𝑐𝑗, 𝑐𝑗]

max
𝑖

[𝑎𝑖𝑗, 𝑎𝑖𝑗]
 (𝑗 = 1, 𝑁). 

Отсюда непосредственно видно, что необходимо выбрать номер 𝑗∗, который 

определяется из следующих условий: 

                          max
𝑗

[𝑐𝑗, 𝑐𝑗]

max
𝑖

[𝑎𝑖𝑗, 𝑎𝑖𝑗]
=

[ 𝑐𝑗∗
, 𝑐𝑗∗

]

max
𝑖

[ 𝑎𝑖𝑗∗
, 𝑎𝑖𝑗∗

]
.                                               (3.1)   

Используя формулу (3.1) и учитывая вышеприведённые определения 4, 5 получим 

следующие критерии выбора номера 𝑗∗ неизвестных  𝑥𝑗∗
 для построения 

субоптимистического и субпессимистического решений соответственно: 

                                         𝑗∗ = 𝑎𝑟𝑔 max
𝑗

𝑐𝑗

max
𝑖

𝑎𝑖𝑗
                                                               (3.2) 

                                         𝑗∗ = 𝑎𝑟𝑔 max
𝑗

𝑐𝑗

max
𝑖

𝑎𝑖𝑗
                                                               (3.3) 

Таким образом для построения субоптимистического решения можно использовать 

критерий (3.2), а для субпессимистического решения (3.3). При этом необходимо учитывать 

случай, в какой интервал входит найденный номер 𝑗∗, т.е. 𝑗∗ ∈ [1, … , 𝑛] ≡ 𝑇 или 𝑗∗ ∈ [𝑛 +
1, 𝑛 + 2, … , 𝑁] ≡ 𝑅 . 

Учитывая эти обстоятельства, нами разработаны два метода для построения 

приближённого решения задачи (1.1)-(1.4). 
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В первом методе в случае, как только присвоить неизвестному 𝑥𝑗∗
,  (𝑗∗ ∈ 𝑅) единицу 

невозможно, то для этой неизвестной принимаем возможные дробные значения, а остальные 

переменные естественно будут принимать значения нуль. 

А во втором методе, как только неизвестному 𝑥𝑗∗
,(𝑗∗ ∈ 𝑅) присвоить единицу 

невозможно, то найденные до тех пор значения неизвестных фиксируем, для остальных 

номеров 𝑗, 𝑗 ∈ 𝑇 присваиваем 𝑥𝑗 ≔ 0 и для нефиксированных неизвестных 𝑥𝑗  (𝑗 ∈ 𝑅) 

построим задачу линейного программирования меньшей размерности. Далее решив 

полученную задачу линейного программирования, присоединяем найденные координаты 

решений к ранее фиксированным. 

Процесс построения субоптимистического и субпессимистического решений 

начинается из начальных решений 𝑋𝑠𝑜 = (0,0, … ,0) или 𝑋𝑠𝑝 = (0,0, … ,0). 

Первый метод. Рассмотрим два случая: 

1. Пусть 𝑗∗ ∈ 𝑇. Тогда 𝑥𝑗∗
 может принимать значения 0 или 1. Если 𝑎𝑖𝑗∗

≤ 𝑏𝑖, для всех 𝑖, 

(𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ), то принимается 𝑥𝑗∗
≔ 1, 𝑏𝑖 ≔ 𝑏𝑖 −  𝑎𝑖𝑗∗

, (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ), 𝑇 ≔ 𝑇\{𝑗∗}, а если хотя бы для 

одного 𝑖 (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ), 𝑎𝑖𝑗∗
> 𝑏𝑖, то принимается 𝑥𝑗∗

≔ 0, 𝑇 ≔ 𝑇\{𝑗∗}. 

2. Пусть 𝑗∗ ∈ 𝑅. Тогда неизвестный 𝑥𝑗∗
 должен принимать любые значения из интервала 

[0; 1]. В этом случае, если 𝑎𝑖𝑗∗
≤ 𝑏𝑖, для всех 𝑖, (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ), то принимаем 𝑥𝑗∗

≔ 1, 𝑏𝑖 ≔ 𝑏𝑖 −

 𝑎𝑖𝑗∗
, (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ )  , 𝑅 ≔ 𝑅\{𝑗∗}, а если хотя бы для одного 𝑖 (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ), 𝑎𝑖𝑗∗

> 𝑏𝑖, то принимаем 

𝑥𝑗∗
≔ min

𝑖
𝑏𝑖/ 𝑎𝑖𝑗∗

, 𝑅 ≔ 𝑅\{𝑗∗}, 𝑏𝑖 ≔ 𝑏𝑖 −  𝑎𝑖𝑗∗
𝑥𝑗∗

. Очевидно, что в этом случае хотя бы для 

одного 𝑖 (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ), получается 𝑏𝑖 = 0 и на этом процесс решения завершается. 

Для продолжения процесса построения субоптимистического решения 𝑋𝑠𝑜 =
(𝑥1

𝑠𝑜 , 𝑥2
𝑠𝑜, … , 𝑥𝑁

𝑠𝑜) находим очередной номер 𝑗∗ из критерия (3.2). Процесс построения суб-

оптимистического решения завершается, если 𝑇 = ∅ и 𝑅 = ∅, т.е. все переменные 

рассмотрены. Отметим, что можно построить субпессимистическое решение 𝑋𝑠𝑝 =

(𝑥1
𝑠𝑝 , 𝑥2

𝑠𝑝 , … , 𝑥𝑁
𝑠𝑝) задачи (1.1)-(1.4) аналогично вышеуказанному, только используя критерий 

(3.3). 

Второй метод. Здесь первый пункт первого подхода остаётся в силе, а второй пункт 

принимает следующий вид: 

Пусть номер 𝑗∗ найденный по критерию (3.2), входит в множество 𝑅 и присвоить 

единицу неизвестному 𝑥𝑗∗
 невозможно. Тогда принимаем 𝑥𝑗 ≔ 0 для 𝑗 ∈ 𝑇. А для остальных 

переменных 𝑥𝑗  (𝑗 ∈ 𝑅) построим задачу линейного программирования и решим каким-

нибудь известным методом. Очевидно, что размерность полученной задачи линейного 

программирования будет существенно меньшей. Эти обстоятельства ещё раз подтверждены 

при вычислительных экспериментах. 

Наконец напишем алгоритм построения субоптимистического решения, который 

представлен выше. (Алгоритм построения субпессимистического решения составляется 

аналогично). 

Алгоритм 1-ого метода. 

Шаг 1. Ввод 𝑁, 𝑛, 𝑎𝑖𝑗 , 𝑎𝑖𝑗, 𝑐𝑗 , 𝑐𝑗 , 𝑏𝑖, 𝑏𝑖, (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁). 

Шаг 2. Принять 𝑏𝑖 ≔ 𝑏𝑖 , 𝑥𝑗
𝑠𝑜 ≔ 0 (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁) и  множества 𝑇 = {1,2, … , 𝑛}, 𝑅 = {𝑛 +

1, 𝑛 + 2, … , 𝑁}. 

Шаг 3. Найти номер 𝑗∗ из критерия  

𝑗∗ = 𝑎𝑟𝑔 max
𝑗

𝑐𝑗

max
𝑗∈𝑇∪𝑅

𝑎𝑖𝑗
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Шаг 4. Если 𝑗∗ ∈ 𝑇 и для 𝑖 (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ) выполняется соотношение 𝑎𝑖𝑗∗
≤ 𝑏𝑖, то принять 𝑥𝑗∗

𝑠𝑜 ≔

1, 𝑏𝑖 ≔ 𝑏𝑖 − 𝑎𝑖𝑗∗
, 𝑇 ≔ 𝑇\{𝑗∗} и переход к шагу 3. 

Шаг 5. Если 𝑗∗ ∈ 𝑇 и хотя бы для одного 𝑖 (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ) выполняется соотношение 𝑎𝑖𝑗∗
> 𝑏𝑖, то 

принять 𝑥𝑗∗

𝑠𝑜 ≔ 0, 𝑇 ≔ 𝑇\{𝑗∗} и переход к шагу 3. 

Шаг 6. Если 𝑗∗ ∈ 𝑅 и для любого 𝑖 (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ) 𝑎𝑖𝑗∗
≤ 𝑏𝑖, то принимаем 𝑥𝑗∗

𝑠𝑜 ≔ 1, 𝑏𝑖 ≔ 𝑏𝑖 − 𝑎𝑖𝑗∗
, 

𝑅 ≔ 𝑅\{𝑗∗}и переход к шагу 3. 

Шаг 7. Если 𝑗∗ ∈ 𝑅 и хотя бы для одного 𝑖 (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ) выполняется соотношение 𝑎𝑖𝑗∗
> 𝑏𝑖, то 

принять 𝑥𝑗∗

𝑠𝑜 ≔ min
𝑖

𝑏𝑖

𝑎𝑖𝑗∗

,  𝑅 ≔ 𝑅\{𝑗∗} и 𝑥𝑗∗

𝑠𝑜 ≔ 0, 𝑗 ∈ 𝑇 ∪ 𝑅. 

Шаг 8. Вычислить 𝑓𝑠𝑜 ≔ ∑ 𝑐𝑗𝑥𝑗
𝑠𝑜𝑁

𝑗=1 . 

Шаг 9.Печать 𝑓𝑠𝑜 , 𝑥𝑠𝑜 = (𝑥1
𝑠𝑜 , 𝑥2

𝑠𝑜 , … , 𝑥𝑁
𝑠𝑜). 

Шаг 10. Stop. 

Отметим, что применением вышеуказанного алгоритма находится субоптимистическое 

решение задачи (1.1)-(1.4). А для построения субпессимистического решения можно 

использовать этот же алгоритм полностью, только вместо использования критерия (3.2) 

необходимо использовать критерий (3.3). Необходимо заметить, что алгоритм построения 

субоптимистического и субпессимистического решений вторым методом, можно 

использовать этот алгоритм, но в случае 𝑗∗ ∈ 𝑇 и хотя бы для одного 𝑖 (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ) выполняется 

соотношение 𝑎𝑖𝑗∗
> 𝑏𝑖, то для всех остальных нефиксированных переменных 𝑗, 𝑗 ∈ 𝑅 

составляем задачу линейного программирования меньшей размерности и решаем. Далее 

полученное решение присоединяем к фиксированным координатам решения. 

Для оценки погрешностей полученных субоптимистических и субпессимистических 

значений от оптимистического и пессимистического значений исходная задача решается как 

задача линейного программирования и получаются соответствующие значения 𝑓𝑜𝑝̅̅ ̅̅ ̅ и 𝑓𝑝𝑒𝑠̅̅ ̅̅ ̅̅ . 

Тогда относительные погрешности оцениваются следующим образом: 

𝛿𝑠𝑜
1 =

𝑓𝑜̅ − 𝑓𝑠𝑜
1

𝑓𝑜̅

, 𝛿𝑠𝑜
2 =

𝑓𝑜̅ − 𝑓𝑠𝑜
2

𝑓𝑜̅

, 𝛿𝑠𝑝
1 =

𝑓𝑝̅ − 𝑓𝑠𝑝
1

𝑓𝑝̅

, 𝛿𝑠𝑝
2 =

𝑓𝑝̅ − 𝑓𝑠𝑝
2

𝑓𝑝̅

. 

Здесь 𝑓𝑠𝑜 
1  𝑓𝑠𝑜

2  , 𝑓𝑠𝑝
1   𝑓𝑠𝑝

2  являются субоптимистическим и субпессимистическим значениями 

целевой функции, полученные методами 1 и 2. 

Необходимо отметить, что при разработке методов решения задач (1.1)-(1.4) были 

использованы идеи работ [12-17]. 

4. Результаты вычислительных экспериментов. 

Для выявления качества разработанных алгоритмов в данной работе составлены 

программы этих алгоритмов и был проведён ряд вычислительных экспериментов над 

задачами большой размерности. Используя работу [14] коэффициенты этих задач выбраны 

как псевдослучайные двухзначные или трёхзначные числа следующим образом: 

I. 0 ≤ 𝑎𝑖𝑗 ≤ 99, 1 ≤ 𝑎𝑖𝑗 ≤ 99, 1 ≤ 𝑐𝑗 ≤ 99, 1 ≤ 𝑐𝑗 ≤ 99, (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁). 

II. 0 ≤ 𝑎𝑖𝑗 ≤ 999, 1 ≤ 𝑎𝑖𝑗 ≤ 999, 1 ≤ 𝑐𝑗 ≤ 999, 1 ≤ 𝑐𝑗 ≤ 999. (𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑗 = 1, 𝑁). 

𝑏𝑖 ≔ [
1

3
∑ 𝑎𝑖𝑗

𝑁

𝑗=1

], 𝑏𝑖 ≔ [
1

3
∑ 𝑎𝑗

𝑁

𝑗=1

]. 

Результаты вычислительных экспериментов представлены в следующих таблицах, где 

для каждой размерности вычислены 5 различных задач. 
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Таблица 1 

Субоптимистические, субпессимистические значения и погрешности для задач с 

двухзначными коэффициентами. (𝑵 = 𝟏𝟎𝟎𝟎; 𝒏 = 𝟔𝟎𝟎; 𝒎 = 𝟏𝟎) 
 

№ 1 2 3 4 5 

𝑓𝑜𝑝
̅̅ ̅̅  45911.804 45296.379 44437.319 45092.610 44435.775 

𝑓𝑠𝑜𝑝
1  44627.593 44136.731 43596.684 44301.667 43647.305 

𝑓𝑠𝑜𝑝
2  44679.811 44198.527 43610.339 44358.495  

43675.640 

𝛿𝑠𝑜𝑝
1  0.028 0.026 0.019 0.018 0.018 

𝛿𝑠𝑜𝑝
2  0.027 

 

0.024 0.019 0.016 0.017 

𝑘𝑠𝑜𝑝
1  0 266 271 269 276 

𝑘𝑠𝑜𝑝
2  199 225 211 213 220 

𝑓𝑝𝑒𝑠
̅̅ ̅̅ ̅ 27827.451 28181.955 28069.358 27822.487 27432.328 

𝑓𝑝𝑒𝑠
1  27642.257 

 

27889.179 27762.000 27613.937 27139.276 

𝑓𝑝𝑒𝑠
2  27642.720 27903.243 27762.000 27630.092 27153.737 

𝛿𝑝𝑒𝑠
1  0.007 

 

0.010 

 

0.011 0.007 0.011 

𝛿𝑝𝑒𝑠
2  0.007 0.010 0.011 0.007 0.010 

𝑘𝑝𝑒𝑠
1  0 266 271 269 276 

𝑘𝑝𝑒𝑠
2  266 271 269 276 280 

 

Таблица 2 

Субоптимистические, субпессимистические значения и погрешности для задач с 

двухзначными коэффициентами. (𝑵 = 𝟏𝟎𝟎𝟎; 𝒏 = 𝟔𝟎𝟎; 𝒎 = 𝟐𝟎) 
 

№ 1 2 3 4 5 

𝑓𝑜𝑝
̅̅ ̅̅  44558.482 44578.974 44549.899 44331.719 45163.213 

𝑓𝑠𝑜𝑝
1  43686.783 43651.345 43832.747 43485.686 44285.322 

 

𝑓𝑠𝑜𝑝
2  43699.872 43690.058 43873.767 43538.872  

44335.886 

𝛿𝑠𝑜𝑝
1  0.020 0.021 0.016 0.019 0.019 

𝛿𝑠𝑜𝑝
2  0.019  

0.020 

0.015 0.018 0.018 

𝑘𝑠𝑜𝑝
1  0 274 277 269 262 

𝑘𝑠𝑜𝑝
2  215 216 207 214 204 

𝑓𝑝𝑒𝑠
̅̅ ̅̅ ̅ 27387.866 28024.450 28307.311 27735.449 28068.734 

𝑓𝑝𝑒𝑠
1  27232.233 27801.020 28070.397 27506.313 27902.925 

𝑓𝑝𝑒𝑠
2  27236.860 27820.880 28078.158 

 

27507.472 27926.215 

𝛿𝑝𝑒𝑠
1  0.006 0.008 0.008 0.008 0.006 

𝛿𝑝𝑒𝑠
2  0.006 0.007 0.008 0.008 0.005 

𝑘𝑝𝑒𝑠
1  0 274 277 269 262 

𝑘𝑝𝑒𝑠
2  274 277 269 262 255 

 

Таблица 3 

Субоптимистические, субпессимистические значения и погрешности для задач с 

трёхзначными коэффициентами. (𝑵 = 𝟏𝟎𝟎𝟎;  𝒏 = 𝟔𝟎𝟎;  𝒎 = 𝟏𝟎) 
 

№ 1 2 3 4 5 

𝑓𝑜𝑝
̅̅ ̅̅  416772.431 407262.286 400559.019 410320.331 

 

402729.978 

𝑓𝑠𝑜𝑝
1  403111.858 396721.293 390388.890 

 

401217.913 392177.833 
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𝑓𝑠𝑜𝑝
2  403492.387 396912.010 390687.146 401814.400 392573.481 

 

𝛿𝑠𝑜𝑝
1  0.033 0.026 0.025 

 

0.022 

 

0.026 

𝛿𝑠𝑜𝑝
2  0.032 

 

0.025 

 

0.025 0.021 0.025 

𝑘𝑠𝑜𝑝
1  0 265 274 265 279 

𝑘𝑠𝑜𝑝
2  218 237 214 226 232 

𝑓𝑝𝑒𝑠
̅̅ ̅̅ ̅ 280754.495 284249.634 282822.257 280536.958 

 

277027.700 

𝑓𝑝𝑒𝑠
1  278290.868 280818.009 279785.821 278534.584 274033.651 

𝑓𝑝𝑒𝑠
2  278305.366 280972.875 279895.739 278678.161 274132.534 

𝛿𝑝𝑒𝑠
1  0.009 0.012 0.011 0.007 0.011 

𝛿𝑝𝑒𝑠
2  0.009 

 

0.012 0.010 0.007 0.010 

𝑘𝑝𝑒𝑠
1  0 265 274 265 279 

𝑘𝑝𝑒𝑠
2  265 274 265 279 279 

 

Таблица 4 

Субоптимистические, субпессимистические значения и погрешности для задач с 

трёхзначными коэффициентами. (𝑵 = 𝟏𝟎𝟎𝟎;  𝒏 = 𝟔𝟎𝟎;  𝒎 = 𝟐𝟎) 
 

№ 1 2 3 4 5 

𝑓𝑜𝑝
̅̅ ̅̅  404404.226 402832.603 401253.637 398984.099 408101.888 

𝑓𝑠𝑜𝑝
1  396514.323 394303.641 394400.295 390595.070 399856.236 

𝑓𝑠𝑜𝑝
2  396927.360 394706.905 394672.167 390759.711 400023.235 

𝛿𝑠𝑜𝑝
1  0.020 0.021 0.017 0.021 

 

0.020 

𝛿𝑠𝑜𝑝
2  0.018 

 

0.020 0.016 0.021 0.020 

𝑘𝑠𝑜𝑝
1  0 276 278 270 265 

𝑘𝑠𝑜𝑝
2  223 222 220 227 210 

𝑓𝑝𝑒𝑠
̅̅ ̅̅ ̅ 275338.802 281891.691 284695.912 278584.081 282174.598 

𝑓𝑝𝑒𝑠
1  273408.051 279153.037 281707.163 275824.704 279565.389 

𝑓𝑝𝑒𝑠
2  273534.686 279358.415 281821.494 275861.689 279724.507 

𝛿𝑝𝑒𝑠
1  0.007 0.010 0.010 0.010 0.009 

𝛿𝑝𝑒𝑠
2  0.007 0.009 0.010 0.010 0.009 

𝑘𝑝𝑒𝑠
1  0 276 278 270 265 

𝑘𝑝𝑒𝑠
2  276 278 270 265 256 

 

В таблицах приняты следующие обозначения: 

𝑁 − число всех переменных;  

𝑛 − число целых переменных;  

𝑓𝑜̅ , 𝑓𝑝𝑒𝑠 ̅̅ ̅̅ ̅̅ − верхние границы субоптимистического и субпессимистического значений 

функционала задачи (1.1)-(1.4) соответственно; 

𝑓𝑠𝑜
1 , 𝑓𝑠𝑜

2 , 𝑓𝑠𝑝
1 , 𝑓𝑠𝑝

2  − субоптимистические и субпессимистические значения целевой 

функции, полученные 1-ым и 2-ым методами соответственно; 

𝛿𝑠𝑜
1 , 𝛿𝑠𝑜

2 ,𝛿𝑠𝑝
1 , 𝛿𝑠𝑝 

1 − относительные погрешности субоптимистического и 

субпессимистического значений целевой функции от оптимистического и 

пессимистического значений, полученные 1-ым и 2-ым методами соответственно; 

𝑘𝑠𝑜
1 , 𝑘𝑠𝑝

1  − число непрерывных переменных после применения метода 1, которой 

присваивается нуль; 
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𝑘𝑠𝑜
2 , 𝑘𝑠𝑝

2  − число оставшихся непрерывных переменных задачи (1.1)-(1.4) для 

применения метода 2 с целью построения субоптимистического и субпессимистического 

решений соответственно. 

5. Вывод. Из вышеприведённых таблиц видно, что субоптимистические и 

субпессимистические значения целевой функции, полученные методами 1 и 2, не сильно 

отличаются друг от друга. Учитывая, что в методе 2 используется аппарат задач линейного 

программирования, т.е. симплекс метод, более практичным можно считать метод 1. 

Относительные погрешности субоптимистических и субпессимистических значений целевой 

функции от верхней и нижней границ оптимистического и пессимистического значений 

меняются в пределах 0,015-0,033 и 0,005-0,012 соответственно. А это означает, что 

применение методов, разработанных в данной работе, даёт значение относительной 

погрешности не больше 2,8%. С другой стороны, после применения 2-го метода для 

построения субоптимистического решения в среднем остается 106 переменных из 500, 213 из 

1000 переменных, а для построения субпессимистического решения оставшееся число 

переменных составляет 136 из 500, и 272 из 1000 переменных. Эти результаты ещё раз 

подтверждают эффективность и практичность разработанных в данной работе методов. 
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K.Ş. Məmmədov, N.O. Məmmədli 

Verilənləri intervallar olan qismən Bul proqramlaşdırması məsələsinin təqribi həll üsulları 

Verilənləri intervallar olan qismən Bul proqramlaşdırması məsələsi üçün mümkün həll, optimist, pessimist, 

suboptimist və subpessimist həll anlayışları verilmişdir. Suboptimist və subpessimist həllərin qurulması üçün üsullar 

işlənmişdir. Müxtəlif böyük ölçülü məsələlər üzərində çoxsaylı hesablama eksperimentləri aparılmışdır və bu 

eksperimentlər işdə təklif olunmuş üsulların yüksək effektliyə malik olmasını bir daha təsdiq etmişdir. 

Açar sözlər: intervallı qismən Bul proqramlaşdırılması məsələsi, optimist, pessimist, suboptimist və 

subpessimist həllər, yuxarı və aşağı sərhədlər, xətalar, hesablama eksperimentləri 

 

 

K.Sh. Mammadov, N.O. Mammadli 

Methods of approximate solution of mixed-Boolean programming problems with interval data 

The authors introduce concepts of feasible, optimistic, pessimistic, suboptimistic and subpessimistic solutions of 

mixed-Boolean programming problems with interval data. Methods are developed for the construction of suboptimistic 

and subpessimistic solutions. Numerous computational experiments are carried out on different large-scale problems 

with random coefficients and these experiments again confirm high efficiency of the methods presented in the paper. 

Keywords: mixed-Boolean programming problem with interval data, optimistic, pessimistic, suboptimistic and 

subpessimistic solutions, upper and low bounds, errors, computational experiments 
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