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In the mixed-integer knapsack problem with interval data the 

concepts of admissible, optimistic, pessimistic, suboptimistic and 

subpessimistic solutions are introduced. The algorithms for their 

construction are developed. The programs of the developed 

algorithms are compiled and a number of computational 

experiments on large dimension problems are carried out. These 

experiments once again confirm the high quality of the developed 

methods. 
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1. Introduction 
 

The following problem is considered:  
 

                         ∑[𝑐𝑗, 𝑐𝑗]

𝑛

𝑗=1

𝑥𝑗 + ∑ [𝑐𝑗, 𝑐𝑗]

𝑁

𝑗=𝑛+1

𝑥𝑗 → max                                                       (1) 

                      ∑[𝑎𝑗 , 𝑎𝑗]

𝑛

𝑗=1

𝑥𝑗 + ∑ [𝑎𝑗, 𝑎𝑗]

𝑁

𝑗=𝑛+1

𝑥𝑗 ≤ [𝑏, 𝑏],                                                  (2) 

 

                   0 ≤ 𝑥𝑗 ≤ 𝑑𝑗     (𝑗 = 1, 𝑁),                                                                            (3) 

                  𝑥𝑗, integers (𝑗 = 1, 𝑛), (𝑛 ≤ 𝑁)                                                                  (4) 
 

Here it is assumed that 0 < 𝑐𝑗 ≤  𝑐𝑗, 0 ≤ 𝑎𝑗 ≤  𝑎𝑗 ,  𝑑𝑗 > 0, (𝑗 = 1, 𝑁), 0 < 𝑏 ≤ 𝑏 and are 

integer. 

It should be noted that for the coefficients of the constraint (2) the following conditions must 

be fulfilled. 
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∑ 𝑎𝑗𝑑𝑗 >

𝑁

𝑗=1

𝑏. 

If the condition 

∑ 𝑎𝑗𝑑𝑗 ≤

𝑁

𝑗=1

𝑏, 

is fulfilled, then this will not be a constraint. 

This problem is said to be an interval mixed integer knapsack problem. It should be noted that 

problem (1)-(4) is more general than the well-known interval knapsack problem, integer knapsack 

problem, mixed-integer knapsack problem of linear programming with one constraint, interval 

problem of linear programming with one constraint. Since for 𝑛 = 0 we obtain an interval problem 

of linear programming with one constraint, when 𝑛 = 𝑁, we obtain a well-known interval knapsack 

problem, but in the case of 𝑐𝑗 =  𝑐𝑗,  𝑎𝑗 =  𝑎𝑗, (𝑗 = 1, 𝑁), 𝑏 = 𝑏, we obtain a mixed-integer 

knapsack problem or an integer knapsack problem. Problem (1)-(4) belongs to the class of NP-

complete problems, i.e. difficult solvable since all the particular cases of this problem are NP-

complete. 

It should be indicated that all classes of problem (1)-(4) were investigated and specific 

algorithms of solutions for them have been developed in [1-7]. But in [8-10] only an interval 

problem of linear programming (non-integer) was researched. 

In this paper, proceeding from an economic interpretation of the problem (1)-(4), the concepts 

of admissible, optimistic, pessimistic, suboptimistic and subpessimistic solutions are introduced. 

Algorithms for construction of suboptimistic and subpessimistic solutions are developed. In the 

development of these algorithms, the basic principles of interval calculus presented in [11] are used. 

Note that in [3 and 5] the interval Boolean knapsack problem was considered. In addition, in 

[5] methods of constructing suboptimistic and subpessimistic solutions of interval problems were 

developed, where all variables take values 0 and 1. In this paper of the considered interval problem, 

some of the variables take integer values, and the rest of the variables change continuously. It is 

clear that the problem considered in this article is more general. Therefore, the method developed 

here can be used to solve in particular the interval Boolean knapsack problem. On the contrary, by 

the method proposed in [3 and 5], it is impossible to solve the considered interval problem of mixed 

integer programming in this work. 

 

2. Problem statement  
 

First, we introduce some economic interpretation for problem (1)-(4). Suppose an enterprise 

(company) produces 𝑁 types of products. 𝑛 types of these, (𝑛 ≤ 𝑁) should be piece and for 𝑁 − 𝑛 

types − non-piece. Assume that the consumption for the production of per unit of the 𝑗th type of 

product is in the interval [𝑎𝑗, 𝑎𝑗], (𝑗 = 1, 𝑁). In this case, the profit for per unit of the 𝑗th product is 

included in the interval [𝑐𝑗, 𝑐𝑗], (𝑗 = 1, 𝑁). Assume that for the production of this product a 

resource is allocated that included in the interval [𝑏, 𝑏]. Obviously, it is necessary to find such a 

number of products (individually piece and non-piece), for which the total production costs did not 

exceed the allocated resources included in the interval [𝑏, 𝑏]. Obviously, taking the unknowns 0 ≤

𝑥𝑗 ≤ 𝑑𝑗, (𝑗 = 1, 𝑁) and for integers 𝑥𝑗, (𝑗 = 1, 𝑛) we obtain the model (1)-(4). 

 For problem (1)-(4), we first introduce some definitions that were introduced for problems 

of mixed Boolean programming with interval data in [6]. 
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Definition 1. 𝑁 − dimensional vector X = (x1, … , xN) is called an admissible solution of the 

problem (1)-(4), if it satisfies system of constraints (2)-(4) for ∀ 𝑎𝑗 ∈ [𝑎𝑗, 𝑎𝑗], (𝑗 = 1, 𝑁) and ∀𝑏 ∈

[𝑏, 𝑏]. 
Note that, in contrast to the well-known concepts, the concepts of optimal solution and 

optimal value of the objective function (1) should have a different meaning, since it is impossible to 

ensure that the sums of intervals of different dimensions do not exceed the fixed ones, and the 

maximum of the sum of the corresponding intervals in the objective function. 

Definition 2. An admissible solution 𝑋𝑜𝑝 = (𝑥1
𝑜𝑝, 𝑥2

𝑜𝑝, … , 𝑥𝑁
𝑜𝑝) is called an optimistic solution 

of the problem (1)-(4), if for ∀ 𝑏 ∈ [𝑏, 𝑏], that satisfies the constraint ∑ 𝑎𝑗𝑥𝑗
𝑜𝑝𝑁

𝑗=1 ≤ 𝑏 and in this the 

value of the function 𝑓𝑜𝑝 = ∑ 𝑐𝑗𝑥𝑗
𝑜𝑝𝑁

𝑗=1  will be maximal. 

Definition 3. An admissible solution 𝑋𝑝 = (𝑥1
𝑝, 𝑥2

𝑝 , … , 𝑥𝑁
𝑝) is called a pessimistic solution of 

problem (1)-(4), if for  ∀𝑏 ∈ [𝑏, 𝑏] that satisfies the relation ∑ 𝑎𝑗𝑥𝑗
𝑝𝑁

𝑗=1 ≤ 𝑏 and in this the value of 

the function 𝑓𝑝 = ∑ 𝑐𝑗𝑥𝑗
𝑝𝑁

𝑗=1  will be maximal. 

Since problem (1)-(4) is a generalization of the integer knapsack problem, it is also included 

in the NP-complete class, i.e. intractable. Therefore, in the following definitions 4 and 5, we have 

introduced the concepts of suboptimistic and subpessimistic (approximate) solutions. 

Definition 4. An admissible solution 𝑋𝑠𝑜 = (𝑥1
𝑠𝑜 , 𝑥2

𝑠𝑜 , … , 𝑥𝑁
𝑠𝑜) is called an suboptimistic 

solution of the problem (1)-(4), if for ∀𝑏 ∈ [𝑏, 𝑏] that satisfies condition ∑ 𝑎𝑗𝑥𝑗
𝑠𝑜𝑁

𝑗=1 ≤ 𝑏 and in this 

the value of the function 𝑓𝑠𝑜 = ∑ 𝑐𝑗𝑥𝑗
𝑠𝑜𝑁

𝑗=1  will take on a large value. 

Definition 5. An admissible solution 𝑋𝑠𝑝 = (𝑥1
𝑠𝑝 , 𝑥2

𝑠𝑝 , … , 𝑥𝑁
𝑠𝑝) is called a subpessimistic 

solution of the problem (1)-(4), if for  ∀𝑏 ∈ [𝑏, 𝑏] that satisfies the relation ∑ 𝑎𝑗𝑥𝑗
𝑠𝑝𝑁

𝑗=1 ≤ 𝑏 and in 

this the value of the function 𝑓𝑠𝑝 = ∑ 𝑐𝑗𝑥𝑗
𝑠𝑝𝑁

𝑗=1

 

 will take on a large value. 

 

3. Theoretical justification of the method 
 

First of all, it should be noted that in Section 2 one economic interpretation of problem (1)-(4) 

is presented. On the basis of this interpretation we assume that some 𝑗th product is produced. Then 

the expenses of this product should be included in the interval [𝑎𝑗, 𝑎𝑗], (𝑗 = 1, 𝑁) from the 

allocated general resource  [𝑏, 𝑏].Obviously, the profit from the sale of the 𝑗th product is included in 

the interval [𝑐𝑗, 𝑐𝑗], (𝑗 = 1, 𝑁). Then the profit of the selected 𝑗th product is [𝑐𝑗, 𝑐𝑗]/[𝑎𝑗, 𝑎𝑗], 

(𝑗 = 1, 𝑁). From this, it follows immediately that it is necessary to produce such a product with the 

number 𝑗∗ where the ratio [𝑐𝑗∗
, 𝑐𝑗∗

]/[𝑎𝑗∗
, 𝑎𝑗∗

] will be maximal. It is clear that the number 𝑗∗ should be 

determined, in the following way: 
 

min
𝑗

[𝑐𝑗, 𝑐𝑗]

[𝑎𝑗, 𝑎𝑗]
= max

𝑗

𝑐𝑗

𝑎𝑗
=

 𝑐𝑗∗

𝑎𝑗∗

 

or  

                                                               𝑗∗ = 𝑎𝑟𝑔 max
𝑗

( 𝑐𝑗/𝑎𝑗).                                                             (5)
 

It should be noted that using formula (5), the selected number 𝑗∗ will correspond to definition 

4, in other words, this approach corresponds to an optimistic strategy. Based on the pessimistic 

strategy, we similarly determine the selection criterion for the production of products with the 

number 𝑗∗ by definition 5, respectively, as follows: 
 

                                                                        𝑗∗ = 𝑎𝑟𝑔 max
𝑗

( 𝑐𝑗/𝑎𝑗).                                                               (6)
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Note that formulas (5), (6) can be taken as criteria for selecting the unknowns 𝑥𝑗∗
 to construct 

suboptimistic and subpessimistic solutions, respectively. However, it is necessary to consider the 

circumstances in which sets the number 𝑗 ∗ is, 𝑗∗ ∈ [1, … , 𝑛] or 𝑗∗ ∈ [𝑛 + 1, 𝑛 + 2, … , 𝑁]. To 

construct solutions, we will take into account these fundamental circumstances. 

Based on the above, we have developed algorithms for constructing sub-optimistic and sub-

pessimistic solutions to problem (1)-(4). Numerous computational experiments are conducted. 

We use the following notations 𝐼 = {1, … , 𝑛} and 𝑅 = {𝑛 + 1, 𝑛 + 2, … , 𝑁}. At the beginning 

of the process of solution construction, we take 𝑋𝑠𝑜 = (𝑥1
𝑠𝑜 , 𝑥2

𝑠𝑜 , … , 𝑥𝑁
𝑠𝑜) = (0,0, … ,0) or 𝑋𝑠𝑝 =

(𝑥1
𝑠𝑝 , 𝑥2

𝑠𝑝 , … , 𝑥𝑁
𝑠𝑝) = (0,0, . . . ,0). In addition, we denote by 𝑆  the set of numbers of unknowns to 

which nonzero values are assigned. Obviously, at the beginning 𝑆 = ∅. To construct a suboptimistic 

solution by criterion 
 

                                          𝑗∗ = 𝑎𝑟𝑔 max
𝑗∈𝐼∪𝑅

(𝑐𝑗/𝑎𝑗)                                                               (7) 

we consider 2 cases: 

1. If 𝑗∗ ∈ 𝐼, then we accept 𝑥𝑗∗
= min{𝑑𝑗∗

, [(𝑏 − ∑ 𝑎𝑖𝑥𝑖)/𝑎𝑗∗𝑖∈𝑆 ]} , 𝑆 ≔ 𝑆 ∪ {𝑗∗}, 𝐼 ≔ 𝐼\{𝑗∗}. 

Here [𝑧] denotes the integer part of the number z. Further, the next number 𝑗∗  is found with the 

formula (7). 

2. If 𝑗∗ ∈ 𝑅, then we accept 𝑥𝑗∗
= min{𝑑𝑗∗

, (𝑏 − ∑ 𝑎𝑖𝑥𝑖)/𝑎𝑗∗𝑖∈𝑆 }, 𝑆 ≔ 𝑆 ∪ {𝑗∗}, 𝑅 ≔ 𝑅\{𝑗∗}.  

It is necessary to take into account especially the following options:  

If min{𝑑𝑗∗
, (𝑏 − ∑ 𝑎𝑖𝑥𝑖)/𝑎𝑗∗𝑖∈𝑆 } = 𝑑𝑗∗

, then the computational process is being continued 

according to the criteria (7) as above. And if min{𝑑𝑗∗
, (𝑏 − ∑ 𝑎𝑖𝑥𝑖)/𝑎𝑗∗𝑖∈𝑆 } = (𝑏 − ∑ 𝑎𝑖𝑥𝑖)/𝑎𝑗∗𝑖∈𝑆 , 

𝑥𝑗
𝑠𝑜 ≔ 0 is accepted for all 𝑗 ∉ 𝑆 and the process to construct a suboptimistic solution is completed. 

The process is completed, as well as, when  𝐼 ∪ 𝑅 = ∅. 
 

An algorithm for the construction of a suboptimistic solution: 

Step 1. Input  𝑁, 𝑛, 𝑎𝑗 , 𝑎𝑗 , 𝑐𝑗, 𝑐𝑗,𝑑𝑗 , (𝑗 = 1, 𝑁), 𝑏, 𝑏. 

Step 2. Accept 𝐼 = {1,2, … , 𝑛}, 𝑅 = {𝑛 + 1, 𝑛 + 2, … , 𝑁}, 𝑏 ≔ 𝑏 и 𝑥𝑗
𝑠𝑜 ≔ 0, 𝑗 ∈ 𝐼 ∪ 𝑅.  

Step 3. Find 𝑗∗ from the criteria 𝑗∗ = 𝑎𝑟𝑔 max
𝑗∈𝐼∪𝑅

(𝑐𝑗/𝑎𝑗). If  𝐼 ∪ 𝑅 = ∅, then pass to the step 7. 

Step 4. If 𝑗∗ ∈ 𝐼, then accept 𝑥𝑗∗
= min{𝑑𝑗∗

, [(𝑏 − ∑ 𝑎𝑖𝑥𝑖)/𝑎𝑗∗𝑖∈𝑆 ]}, 𝑆 ≔ 𝑆 ∪ {𝑗∗}, 𝐼 ≔ 𝐼\{𝑗∗} and 

pass to the step 3. 

Step 5. If 𝑗∗ ∈ 𝑅, then accept 𝑥𝑗∗
= min{𝑑𝑗∗

, (𝑏 − ∑ 𝑎𝑖𝑥𝑖)/𝑎𝑗∗𝑖∈𝑆 }, 𝑆 ≔ 𝑆 ∪ {𝑗∗}, 𝑅 ≔ 𝑅\{𝑗∗}. If 

𝑥𝑗∗
= (𝑏 − ∑ 𝑎𝑖𝑥𝑖)/𝑎𝑗∗𝑖∈𝑆 , then accept 𝑥𝑗

𝑠𝑜 ≔ 0 для 𝑗 ∉ 𝑆 and pass to the step 7, else pass to the 

step 3. 

Step 6. Compute 𝑓𝑠𝑜 ≔ ∑ 𝑐𝑗𝑥𝑗
𝑠𝑜𝑁

𝑗=1 . 

Step 7. Print 𝑓𝑠𝑜 , 𝑥𝑠𝑜 = (𝑥1
𝑠𝑜 , 𝑥2

𝑠𝑜 , … , 𝑥𝑁
𝑠𝑜). 

Step 8. Stop. 

 

4. Results of computational experiments 
 

To determine the efficiency of the method proposed, the algorithms for constructing of 

suboptimistic and subpessimistic solutions are compiled under Turbo Pascal, and a number of 

computational experiments on random problems of various dimensions are carried out. The 

coefficients of solved problems satisfy the following conditions and are pseudorandom two-digit or 

three-digit numbers: 

I. 1 ≤ 𝑎𝑗 ≤ 99, 1 ≤ 𝑎𝑗 ≤ 99, 1 ≤ 𝑐𝑗 ≤ 99, 1 ≤ 𝑐𝑗 ≤ 99, (𝑗 = 1, 𝑁). 

II. 1 ≤ 𝑎𝑗 ≤ 999, 1 ≤ 𝑎𝑗 ≤ 999, 1 ≤ 𝑐𝑗 ≤ 999, 1 ≤ 𝑐𝑗 ≤ 999, (𝑗 = 1, 𝑁). 
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𝑏 ≔ [
1

3
∑ 𝑎𝑗𝑑𝑗

𝑁
𝑗=1 ], 𝑏 ≔ [

1

3
∑ 𝑎𝑗

𝑁
𝑗=1 𝑑𝑗]. 

Here 𝑑𝑗 = 10, (𝑗 = 1, 𝑁) is accepted. 

Table 1 

Results of solved problems with two-digit coefficients. (𝑵 = 𝟏𝟎𝟎; 𝒏 = 𝟔𝟎) 

Table 2 

Results of solved problems with two-digit coefficients.(𝑵 = 𝟐𝟎𝟎; 𝒏 = 𝟏𝟎𝟎) 
 

№ 𝑏 𝑏 𝑓𝑚
𝑠𝑜 𝑓𝑐

𝑜 𝑓𝑖
𝑜 𝛿𝑜 𝑓𝑚

𝑠𝑝
 𝑓𝑐

𝑝
 𝑓𝑖

𝑝
 𝛿𝑝 

1 49169 49319 102951.94 102951.94 102930 0.00000 58825.29 58825.69 58815 0.00069 

2 47259 47293 109155.52 109156.52 109149 0.00091 61686.87 61687.15 61672 0.00045 

3 47876 47926 100421.27 100421.35 100410 0.00007 59621.05 59621.05 59602 0.00000 

4 46709 46743 110786.98 110786.98 110775 0.00000 62201.88 62201.88 62192 0.00000 

5 46489 46739 99985.60 99985.60 99981 0.00000 58187.49 58187.49 58184 0.00000 

 

Table 3 

Results of solved problems with two-digit coefficients. (𝑵 = 𝟓𝟎𝟎; 𝒏 = 𝟑𝟎𝟎) 
 

№ 𝑏 𝑏 𝑓𝑚
𝑠𝑜 𝑓𝑐

𝑜 𝑓𝑖
𝑜 𝛿𝑜 𝑓𝑚

𝑠𝑝
 𝑓𝑐

𝑝
 𝑓𝑖

𝑝
 𝛿𝑝 

1 121666 121699 256929.48 256929.53 256920 0.00002 145745.20 145745.20 145741 0.00000 

2 117879 117913 264728.52 264728.52 264728 0.00000 151465.20 151465.20 151448 0.00000 

3 119749 119783 259880.16 259880.16 259865 0.00000 156047.10 156047.13 156040 0.00002 

4 114643 114663 255827.29 255827.29 255824 0.00000 151895.17 151895.17 151880 0.00000 

5 119766 119799 256356.60 256356.60 256349 0.00000 152686.16 152686.16 152672 0.00000 

 

Table 4 

Results of solved problems with two-digit coefficients. (𝑵 = 𝟏𝟎𝟎𝟎; 𝒏 = 𝟔𝟎𝟎) 
 

№ 𝑏 𝑏 𝑓𝑚
𝑠𝑜 𝑓𝑐

𝑜 𝑓𝑖
𝑜 𝛿𝑜 𝑓𝑚

𝑠𝑝
 𝑓𝑐

𝑝
 𝑓𝑖

𝑝
 𝛿𝑝 

1 236079 236113 526419.29 526419.62 526407 0.00006 307095.43 307095.43 307091 0.00000 

2 234836 234869 515673.73 515673.76 515664 0.00000 298003.12 298003.23 297988 0.00004 

3 234603 234723 520865.43 520865.44 520855 0.00000 298869.81 298869.87 298864 0.00002 

4 234939 234973 516178.26 516178.33 516160 0.00001 304419.53 304419.53 304418 0.00000 

5 236426 236639 515603.16 515603.16 515602 0.00000 303237.67 303237.67 303230 0.00000 

 

Table 5 

Results of solved problems with three-digit coefficients. (𝑵 = 𝟏𝟎𝟎; 𝒏 = 𝟔𝟎) 
 

№ 𝑏 𝑏 𝑓𝑚
𝑠𝑜 𝑓𝑐

𝑜 𝑓𝑖
𝑜 𝛿𝑜 𝑓𝑚

𝑠𝑝
 𝑓𝑐

𝑝
 𝑓𝑖

𝑝
 𝛿𝑝 

1 234873 235106 472585.34 472585.34 472401 0.00000 308802.22 308802.22 308735 0.00000 

2 222593 224776 493224.45 493232.82 492880 0.00170 314759.36 314759.36 314673 0.00000 

3 213396 213429 502854.53 502857.16 502838 0.00052 335426.37 335426.37 335226 0.00000 

4 222599 223683 486812.63 486824.35 486675 0.00241 296555.14 296555.56 296476 0.00014 

5 217356 217389 485469.36 485482.12 485296 0.00263 292004.90 292004.90 291827 0.00000 

 

№ 𝑏 𝑏 𝑓𝑚
𝑠𝑜 𝑓𝑐

𝑜 𝑓𝑖
𝑜 𝛿𝑜 𝑓𝑚

𝑠𝑝
 𝑓𝑐

𝑝
 𝑓𝑖

𝑝
 𝛿𝑝 

1 25079 25103 51839.42 51839.92 51828 0.00095 30559.21 30559.21 30547 0.00000 

2 23756 23976 53901.43 53910.33 53866 0.01651 31235.31 31235.31 31223 0.00000 

3 22566 22599 54809.42 54809.42 54784 0.00000 33107.25 33108.17 33088 0.00278 

4 23636 23746 53268.28 53268.96 53253 0.00128 29130.31 29131.23 29128 0.00315 

5 22906 22939 52532.80 52532.80 52510 0.00000 28861.45 28862.75 28849 0.00449 
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Table 6 

Results of solved problems with three-digit coefficients. (𝑵 = 𝟐𝟎𝟎; 𝒏 = 𝟏𝟎𝟎) 
 

№ 𝑏 𝑏 𝑓𝑚
𝑠𝑜 𝑓𝑐

𝑜 𝑓𝑖
𝑜 𝛿𝑜 𝑓𝑚

𝑠𝑝
 𝑓𝑐

𝑝
 𝑓𝑖

𝑝
 𝛿𝑝 

1 466606 468119 945072.19 945074.16 945069 0.00021 598981.41 598981.92 598868 0.00009 

2 444633 444666 1003162.57 1003168.80 1002971 0.00062 623143.50 623143.50 623103 0.00000 

3 447989 448489 904250.40 904277.61 904136 0.00301 602196.40 602196.40 602191 0.00000 

4 444759 444793 1012594.12 1012597.47 1012522 0.00033 625751.43 625756.09 625597 0.00074 

5 439113 441619 909568.57 909574.97 909523 0.00070 590958.74 590960.69 590900 0.00033 

 

Table 7 

Results of solved problems with three-digit coefficients. (𝑵 = 𝟓𝟎𝟎; 𝒏 = 𝟑𝟎𝟎) 
 

№ 𝑏 𝑏 𝑓𝑚
𝑠𝑜 𝑓𝑐

𝑜 𝑓𝑖
𝑜 𝛿𝑜 𝑓𝑚

𝑠𝑝
 𝑓𝑐

𝑝
 𝑓𝑖

𝑝
 𝛿𝑝 

1 1148366 1148399 2359638.44 2359638.44 2359604 0.00000 1471270.25 1471274.35 1471126 0.00028 

2 1110933 1110966 2418038.42 2418038.86 2417998 0.00002 1525965.57 1525967.70 1525819 0.00014 

3 1127116 1127149 2364044.79 2364044.79 2363967 0.00000 1583365.12 1583366.33 1583334 0.00008 

4 1079106 1079313 2328347.63 2328347.63 2328249 0.00000 1537343.54 1537343.54 1537314 0.00000 

5 1126003 1126036 2349724.96 2349727.44 2349546 0.00011 1543804.08 1543804.08 1543725 0.00000 

 

Table 8 

Results of solved problems with three-digit coefficients. (𝑵 = 𝟏𝟎𝟎𝟎; 𝒏 = 𝟔𝟎𝟎) 
 

№ 𝑏 𝑏 𝑓𝑚
𝑠𝑜 𝑓𝑐

𝑜 𝑓𝑖
𝑜 𝛿𝑜 𝑓𝑚

𝑠𝑝
 𝑓𝑐

𝑝
 𝑓𝑖

𝑝
 𝛿𝑝 

1 2228703 2228736 4781655.64 4781659.75 4781481 0.00009 3113348.61 3113349.40 3113280 0.00003 

2 2216249 2216283 4718196.79 4718197.28 4718063 0.00001 3020861.48 3020861.53 3020828 0.00000 

3 2213056 2214239 4764250.84 4764250.84 4764234 0.00000 3029128.19 3029136.24 3029088 0.00027 

4 2212756 2212789 4699264.64 4699264.64 4699162 0.00000 3082745.34 3082746.03 3082729 0.00002 

5 2224903 2227053 4688267.00 4688267.00 4688220 0.00000 3072220.04 3072220.04 3072190 0.00000 
 

These experiments once again confirm the high quality of the developed method. 

The following designations are used in the tables (1-8): 

𝑁 – the number of all variables; 

𝑛 – the number of integer variables; 

𝑏, 𝑏  – lower and upper bound of an interval in constraint (2); 

 𝑓𝑚
𝑠𝑜, 𝑓𝑚

𝑠𝑝 – suboptimistic and subpessimistic values of the functional of the mixed-integer 

problem (1)-(4), respectively; 

𝑓𝑐
𝑜 , 𝑓𝑐

𝑝 – values of the functional of continued optimistic and pessimistic problems, 

respectively, i.e. an upper bound of the optimistic and pessimistic values of the functional of the 

problem (1)-(4), respectively; 

𝑓𝑖
𝑜 , 𝑓𝑖

𝑝
 – values of the functional of continues optimistic and pessimistic problems, 

respectively, i.e. a lower bound of the optimistic and pessimistic values of the functional of the 

problem (1)-(4), respectively; 

𝛿𝑜 , 𝛿𝑝 – relative errors (in percents) of the suboptimistic and subpessimistic values of the 

functional of the problem (1)-(4) respectively, i.e.  
 

𝛿𝑜 = ((𝑓𝑐
𝑜 − 𝑓𝑚

𝑜)/𝑓𝑐
𝑜) × 100 , 𝛿𝑝 = ((𝑓𝑐

𝑝 − 𝑓𝑚
𝑝)/𝑓𝑐

𝑝) × 100. 
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5. Conclusions 

 

Based on the tables (1-8), the following conclusions may be drawn. 

The difference between the suboptimistic and subpessimistic values of problem (1)-(4) obtained by 

the method in this article from the optimistic and pessimistic values of the functional of problem 

(1)-(4) is not great. In other words, the relative errors of suboptimistic and subpessimistic values 

from optimistic and pessimistic values, respectively, vary within a range of 0÷1.017%. If 𝛿𝑜 and 𝛿𝑝 

take on the value 0, it means that the corresponding suboptimistic and subpessimistic values are 

simultaneously optimistic and pessimistic values. These circumstances once again confirm the high 

efficiency of the proposed method developed in this paper. This increases the usage rate of this 

method for solving real practical problems. 
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