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ABSTRACT

In the mixed-integer knapsack problem with interval data the
concepts of admissible, optimistic, pessimistic, suboptimistic and
subpessimistic solutions are introduced. The algorithms for their
construction are developed. The programs of the developed
algorithms are compiled and a number of computational
experiments on large dimension problems are carried out. These
experiments once again confirm the high quality of the developed
methods.

1. Introduction

The following problem is considered:

n N
Z[ijj] % + Z ¢ 6] % = max D
j=1 j= n+1
n
Z a;, @)% + Z laj, @] % < [b, b] (2)
j=1 j=n+1
0<x;<d, (j=1N), 3)
x;, integers (j = 1,n), (n < N) (4)

Here it is assumed that 0<¢; < ¢;,0<a;< @, d; >0,(j=1,N),0<b <b and are

integer.

It should be noted that for the coefficients of the constraint (2) the following conditions must

be fulfilled.
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is fulfilled, then this will not be a constraint.

This problem is said to be an interval mixed integer knapsack problem. It should be noted that
problem (1)-(4) is more general than the well-known interval knapsack problem, integer knapsack
problem, mixed-integer knapsack problem of linear programming with one constraint, interval
problem of linear programming with one constraint. Since for n = 0 we obtain an interval problem
of linear programming with one constraint, when n = N, we obtain a well-known interval knapsack
problem, but in the case of ¢; = ¢;, a; = @, (j=1,N), b =b, we obtain a mixed-integer
knapsack problem or an integer knapsack problem. Problem (1)-(4) belongs to the class of NP-
complete problems, i.e. difficult solvable since all the particular cases of this problem are NP-
complete.

It should be indicated that all classes of problem (1)-(4) were investigated and specific
algorithms of solutions for them have been developed in [1-7]. But in [8-10] only an interval
problem of linear programming (non-integer) was researched.

In this paper, proceeding from an economic interpretation of the problem (1)-(4), the concepts
of admissible, optimistic, pessimistic, suboptimistic and subpessimistic solutions are introduced.
Algorithms for construction of suboptimistic and subpessimistic solutions are developed. In the
development of these algorithms, the basic principles of interval calculus presented in [11] are used.

Note that in [3 and 5] the interval Boolean knapsack problem was considered. In addition, in
[5] methods of constructing suboptimistic and subpessimistic solutions of interval problems were
developed, where all variables take values 0 and 1. In this paper of the considered interval problem,
some of the variables take integer values, and the rest of the variables change continuously. It is
clear that the problem considered in this article is more general. Therefore, the method developed
here can be used to solve in particular the interval Boolean knapsack problem. On the contrary, by
the method proposed in [3 and 5], it is impossible to solve the considered interval problem of mixed
integer programming in this work.

2. Problem statement

First, we introduce some economic interpretation for problem (1)-(4). Suppose an enterprise
(company) produces N types of products. n types of these, (n < N) should be piece and for N — n
types — non-piece. Assume that the consumption for the production of per unit of the j™ type of

product is in the interval [a;,@;], (j = 1,N). In this case, the profit for per unit of the j™ product is
included in the interval [c;,c;],(j =1,N). Assume that for the production of this product a
resource is allocated that included in the interval [b, b]. Obviously, it is necessary to find such a
number of products (individually piece and non-piece), for which the total production costs did not
exceed the allocated resources included in the interval [b, b]. Obviously, taking the unknowns 0 <
x; < d;, (j = 1,N) and for integers x;, (j = 1,n) we obtain the model (1)-(4).

For problem (1)-(4), we first introduce some definitions that were introduced for problems
of mixed Boolean programming with interval data in [6].
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Definition 1. N — dimensional vector X = (x4, ..., Xy) is called an admissible solution of the
problem (1)-(4), if it satisfies system of constraints (2)-(4) for V a; € [a;,@;], (j = 1,N) and Vb €
[b.5]

Note that, in contrast to the well-known concepts, the concepts of optimal solution and
optimal value of the objective function (1) should have a different meaning, since it is impossible to
ensure that the sums of intervals of different dimensions do not exceed the fixed ones, and the
maximum of the sum of the corresponding intervals in the objective function.

Definition 2. An admissible solution X°P = (x{¥, x5, ..., xy7 ) is called an optimistic solution
of the problem (1)-(4), if for v b € [b b] that satisfies the constraint ¥}, a;x7” < b and in this the
value of the function f°P = 7 Micxy : P will be maximal.

Definition 3. An admissible solution X? = (xF,x?,...,xk) is called a pessimistic solution of
problem (1)-(4), if for Vb € [Q, b] that satisfies the relation Zﬂyzlajx}’ < b and in this the value of
the function f? = %1, c;x} will be maximal.

Since problem (1)-(4) is a generalization of the integer knapsack problem, it is also included
in the NP-complete class, i.e. intractable. Therefore, in the following definitions 4 and 5, we have

introduced the concepts of suboptimistic and subpessimistic (approximate) solutions.
Definition 4. An admissible solution X$° = (x7°, x3°,...,x3°) is called an suboptimistic

solution of the problem (1)-(4), if for vb € [b b] that satisfies condltlon ZN 1a;x;7° < b and in this
the value of the function f*° = ] 1 jx;° will take on a large value.

Definition 5. An admissible solutlon XP = (x?,x;7, ..., x50 ) is called a subpessimistic
solution of the problem (1)-(4), if for Vb € [b b] that satisfies the relation ZN 14 ]p < b and in
this the value of the function f5P = 1=1£1 ].Sp will take on a large value.

3. Theoretical justification of the method

First of all, it should be noted that in Section 2 one economic interpretation of problem (1)-(4)
is presented. On the basis of this interpretation we assume that some j product is produced. Then

the expenses of this product should be included in the interval [a;,a;], (j =1,N) from the
allocated general resource [Q, E].Obviously, the profit from the sale of the j® product is included in
the interval [c;,c;], (j =1,N). Then the profit of the selected j® product is [c; ¢;]/[a), @],
(j = m) From this, it follows immediately that it is necessary to produce such a product with the
number j, where the ratio [c;,,<;.|/[a;,, ;. ] will be maximal. It is clear that the number j, should be
determined, in the following way:

Ci, Ci c Cj,
N ) R
J [a};aj] Ja; a4,
or
J« =arg m]aX(Ej/ﬂj)- (5)

It should be noted that using formula (5), the selected number j, will correspond to definition
4, in other words, this approach corresponds to an optimistic strategy. Based on the pessimistic
strategy, we similarly determine the selection criterion for the production of products with the
number j, by definition 5, respectively, as follows:

j. = arg max(¢; /@) (6)
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Note that formulas (5), (6) can be taken as criteria for selecting the unknowns x;_ to construct
suboptimistic and subpessimistic solutions, respectively. However, it is necessary to consider the
circumstances in which sets the number j, is, j, €[1,..,n] or j,€[n+1,n+2,..,N]. To
construct solutions, we will take into account these fundamental circumstances.

Based on the above, we have developed algorithms for constructing sub-optimistic and sub-
pessimistic solutions to problem (1)-(4). Numerous computational experiments are conducted.

We use the following notations I = {1, ...,n}and R = {n + 1,n + 2, ..., N}. At the beginning
of the process of solution construction, we take X*° = (x{°, x5, ...,x5") = (0,0, ...,0) or X =
(27, %57, ..., %7 ) = (0,0,...,0). In addition, we denote by S the set of numbers of unknowns to

which nonzero values are assigned. Obviously, at the beginning S = @. To construct a suboptimistic
solution by criterion

Je=arg g%(q/a,) (7)

we consider 2 cases:

1. If j, €1, then we accept x;, = min{d;,[(b — Tiesaix;))/a; ]}, S =SU{i} [ =N{.}
Here [z] denotes the integer part of the number z. Further, the next number j, is found with the
formula (7).

2. If j, € R, then we accept x;, = min{d, , (b — Yiesaix;)/a;.}, S = S U {j.}, R == R\{j.}.

It is necessary to take into account especially the following options:

If min{dj*'(b_Ziesgixi)/gj*} =d; , then the computational process is being continued
according to the criteria (7) as above. And if min{d;, (b — Yies aix;)/a;,} = (b — Yies aixi)/a;,,
x7° == 0 is accepted for all j ¢ S and the process to construct a suboptimistic solution is completed.

]
The process is completed, as well as, when TUR = @.

An algorithm for the construction of a suboptimistic solution:
Step 1. Input N,n,a;,a;,c;,c;d;, (j =1,N),b, b.
Step 2. Accept I = {1,2,...,n},R={n+1,n+2,..,N},b:=bux:=0,j €[ UR.

Step 3. Find j, from the criteria j, = arg rg%ﬁ(c]/a]) If TUR = (D then pass to the step 7.
J

Step 4. If j, €1, then accept x;, = min{d,, [(b — Tiesaixi)/a;, |} S =S U {i.}, I =1\{.} and
pass to the step 3.

Step 5. If j. € R, then accept x;, = min{d, , (b — Yiesa;x;)/a;.},S =S U{.}, R:=R\{.}. If
xj, = (b — Xies a;x;)/a;,, then accept x;° := 0 qa j € S and pass to the step 7, else pass to the
step 3.

Step 6. Compute fs" =Y 1E] f".
Step 7. Print £5°, x5° = (x7°, x3°, ..., x3°
Step 8. Stop.

4. Results of computational experiments

To determine the efficiency of the method proposed, the algorithms for constructing of
suboptimistic and subpessimistic solutions are compiled under Turbo Pascal, and a number of
computational experiments on random problems of various dimensions are carried out. The
coefficients of solved problems satisfy the following conditions and are pseudorandom two-digit or
three-digit numbers:
11<a;<99,1<8<99,1<¢;<99,1<¢,<99,(j = 1N).

1.1<a;<999,1<7 <999, 1<¢;<999,1<¢; <999, (j =1,N).
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— [LyN ho— [LYN =
b=[3Va;d)), b=, T d].
Here d; = 10, (j = 1,N) is accepted.
Table 1
Results of solved problems with two-digit coefficients. (N = 100; n = 60)
Ne Q E _ﬂslo fco fio 5° foLp fcp fip SP
1 25079 25103 | 51839.42 | 51839.92 | 51828 | 0.00095 | 30559.21 | 30559.21 | 30547 | 0.00000
2 23756 23976 | 53901.43 | 53910.33 | 53866 | 0.01651 | 3123531 | 3123531 | 31223 | 0.00000
3 22566 22599 | 54809.42 | 54809.42 | 54784 | 0.00000 | 33107.25 | 33108.17 | 33088 | 0.00278
4 23636 23746 | 53268.28 | 53268.96 | 53253 | 0.00128 | 29130.31 | 29131.23 [ 29128 | 0.00315
5 22906 22939 | 52532.80 | 52532.80 | 52510 | 0.00000 | 28861.45 | 28862.75 | 28849 | 0.00449
Table 2
Results of solved problems with two-digit coefficients.(N = 200;n = 100)
Ne b b i & e 8¢ fon £ 7 b
1 | 49169 | 49319 102951.94 | 102951.94 | 102930 | 0.00000 | 58825.29 | 58825.69 | 58815 | 0.00069
2 | 47259 | 47293 10915552 | 10915652 | 109149 | 0.00091 | 61686.87 | 61687.15 | 61672 | 0.00045
3 | 47876 | 47926 10042127 | 10042135 | 100410 | 0.00007 | 59621.05 | 59621.05 | 59602 | 0.00000
4 | 46709 | 46743 110786.98 | 110786.98 | 110775 | 0.00000 | 62201.88 | 62201.88 | 62192 | 0.00000
5 | 46489 | 46739 99985.60 | 99985.60 | 99981 0.00000 | 58187.49 | 58187.49 | 58184 | 0.00000
Table 3
Results of solved problems with two-digit coefficients. (N = 500;n = 300)
Ne é E ns10 fco fio 5° fnip fcp f;l’ oP
1 [ 121666 | 121699 | 256929.48 | 256929.53 | 256920 | 0.00002 | 145745.20 | 14574520 | 145741 | 0.00000
2 | 117879 | 117913 | 26472852 | 26472852 | 264728 | 0.00000 | 151465.20 | 151465.20 | 151448 | 0.00000
3 | 119749 | 119783 | 259880.16 | 259880.16 | 259865 | 0.00000 | 156047.10 | 156047.13 | 156040 | 0.00002
4 | 114643 | 114663 | 255827.29 | 255827.29 | 255824 | 0.00000 | 151895.17 | 151895.17 | 151880 | 0.00000
5 | 119766 | 119799 | 256356.60 | 256356.60 | 256349 | 0.00000 | 152686.16 | 152686.16 | 152672 | 0.00000
Table 4
Results of solved problems with two-digit coefficients. (N = 1000; n = 600)
Ne é E ns10 fco fio 50 fnip fcp f;l’ 5P
1 [ 236079 | 236113 | 526419.29 | 526419.62 | 526407 | 0.00006 | 307095.43 | 307095.43 | 307091 | 0.00000
2 | 234836 | 234869 | 515673.73 | 515673.76 | 515664 | 0.00000 | 298003.12 | 298003.23 | 297988 | 0.00004
3 | 234603 | 234723 | 520865.43 | 520865.44 | 520855 | 0.00000 | 298869.81 | 298869.87 | 298864 | 0.00002
4 | 234939 | 234973 | 516178.26 | 516178.33 | 516160 | 0.00001 | 304419.53 | 304419.53 | 304418 | 0.00000
5 | 236426 | 236639 | 515603.16 | 515603.16 | 515602 | 0.00000 | 303237.67 | 303237.67 | 303230 | 0.00000
Table 5
Results of solved problems with three-digit coefficients. (N = 100; n = 60)
No k E "slo fco fio 50 f"SlZJ fcp fip FY4
1 | 234873 | 235106 | 472585.34 | 472585.34 | 472401 | 0.00000 | 308802.22 | 308802.22 | 308735 | 0.00000
2 [ 222593 | 224776 | 493224.45 | 493232.82 | 492880 | 0.00170 | 314759.36 | 314759.36 | 314673 | 0.00000
3 [ 213396 | 213429 | 502854.53 | 502857.16 | 502838 | 0.00052 | 335426.37 | 335426.37 | 335226 | 0.00000
4 | 222599 | 223683 | 486812.63 | 486824.35 | 486675 | 0.00241 | 296555.14 | 29655556 | 296476 | 0.00014
5 |[217356 | 217389 | 485469.36 | 485482.12 | 485296 | 0.00263 | 292004.90 | 292004.90 | 291827 | 0.00000
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Table 6
Results of solved problems with three-digit coefficients. (N = 200; n = 100)
Ne Q E _ﬂslo fco fio 5° f_”SLp fcp fip SP
1 | 466606 | 468119 | 945072.19 | 945074.16 | 945069 | 0.00021 | 598981.41 | 598981.92 | 598868 | 0.00009
2 | 444633 | 444666 | 1003162.57 | 1003168.80 | 1002971 | 0.00062 | 623143.50 | 623143.50 | 623103 | 0.00000
3 | 447989 | 448489 | 90425040 | 904277.61 | 904136 | 0.00301 | 602196.40 | 602196.40 | 602191 | 0.00000
4 | 444759 | 444793 | 1012594.12 | 1012597.47 | 1012522 | 0.00033 | 625751.43 | 625756.09 | 625597 | 0.00074
5 | 439113 | 441619 | 909568.57 | 909574.97 | 909523 | 0.00070 | 590958.74 | 590960.69 | 590900 | 0.00033
Table 7
Results of solved problems with three-digit coefficients. (N = 500; n = 300)
7 o] S
No Q b fnslo fco fL 5° fmp fcp fip 6P
1 | 1148366 | 1148399 | 2359638.44 | 2359638.44 | 2359604 | 0.00000 | 1471270.25 | 1471274.35 | 1471126 | 0.00028
2 | 1110933 | 1110966 | 2418038.42 | 2418038.86 | 2417998 | 0.00002 | 1525965.57 | 1525967.70 | 1525819 | 0.00014
3 | 1127116 | 1127149 | 2364044.79 | 2364044.79 | 2363967 | 0.00000 | 1583365.12 | 1583366.33 | 1583334 | 0.00008
4 1079106 | 1079313 | 2328347.63 | 2328347.63 | 2328249 | 0.00000 | 1537343.54 | 153734354 | 1537314 | 0.00000
5 | 1126003 | 1126036 | 2349724.96 | 2349727.44 | 2349546 | 0.00011 | 1543804.08 | 1543804.08 | 1543725 | 0.00000
Table 8
Results of solved problems with three-digit coefficients. (N = 1000; n = 600)
No é E T;s‘lo fco fio 5° fnSIP fcp fip op
1 | 2228703 | 2228736 | 4781655.64 | 4781659.75 | 4781481 | 0.00009 | 3113348.61 | 3113349.40 | 3113280 | 0.00003
2 | 2216249 | 2216283 | 4718196.79 | 4718197.28 | 4718063 | 0.00001 | 3020861.48 | 3020861.53 | 3020828 | 0.00000
3 | 2213056 | 2214239 | 4764250.84 | 4764250.84 | 4764234 | 0.00000 | 3029128.19 | 3029136.24 | 3029088 | 0.00027
4 | 2212756 | 2212789 | 4699264.64 | 4699264.64 | 4699162 | 0.00000 | 3082745.34 | 3082746.03 | 3082729 | 0.00002
5 | 2224903 | 2227053 | 4688267.00 | 4688267.00 | 4688220 | 0.00000 | 3072220.04 | 3072220.04 | 3072190 | 0.00000

These experiments once again confirm the high quality of the developed method.
The following designations are used in the tables (1-8):

N — the number of all variables;
n — the number of integer variables;
Q,b_ — lower and upper bound of an interval in constraint (2);
50, fP — suboptimistic and subpessimistic values of the functional of the mixed-integer
problem (1)-(4), respectively;
£2,fP — values of the functional of continued optimistic and pessimistic problems,
respectively, i.e. an upper bound of the optimistic and pessimistic values of the functional of the
problem (1)-(4), respectively;
fi",fip — values of the functional of continues optimistic and pessimistic problems,
respectively, i.e. a lower bound of the optimistic and pessimistic values of the functional of the
problem (1)-(4), respectively;
69,87 — relative errors (in percents) of the suboptimistic and subpessimistic values of the
functional of the problem (1)-(4) respectively, i.e.
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5. Conclusions

Based on the tables (1-8), the following conclusions may be drawn.
The difference between the suboptimistic and subpessimistic values of problem (1)-(4) obtained by
the method in this article from the optimistic and pessimistic values of the functional of problem
(1)-(4) is not great. In other words, the relative errors of suboptimistic and subpessimistic values
from optimistic and pessimistic values, respectively, vary within a range of 0+1.017%. If §° and &7
take on the value 0, it means that the corresponding suboptimistic and subpessimistic values are
simultaneously optimistic and pessimistic values. These circumstances once again confirm the high
efficiency of the proposed method developed in this paper. This increases the usage rate of this
method for solving real practical problems.
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