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1. Introduction 

 

Various necessary optimality conditions such as Pontryagin's maximum principle in various 

optimal control problems described by ordinary differential equations are proved in [1-4] and others. 

The studies [5-9] and others are devoted to the qualitative theory of optimal control of Goursat-

Darboux systems. 

Many processes are also described by various integro-differential and integral equations (see 

e.g., [10-14]). 

In this paper, we consider one optimal control problem described by a system of two-

dimensional integral equations of the Volterra type. Analogs of L.S. Pontryagin's maximum principle 

[1-3] and the linearized maximum condition [2-4]. In the case of the open control domain, an analogue 

of the Euler equation is established. 

 

2. Problem statement 
 

Suppose 𝐷 = [𝑡0, 𝑡1] × [𝑥0, 𝑥1] is a given rectangle, and (𝑇𝑖, 𝑋𝑖), 𝑖 = 1, 𝑘̅̅ ̅̅̅, (𝑡0 < 𝑇1 < ⋯ <
𝑇𝑘 < 𝑡1, 𝑥0 < 𝑋1 < ⋯ < 𝑋𝑘  < 𝑥1 ) are given points. 

Let it be required to find the minimum value of the multipoint functional 

𝑆(𝑢) = 𝜑(𝑧(𝑇1, 𝑋1), 𝑧(𝑇2, 𝑋2), … , 𝑧(𝑇𝑘, 𝑋𝑘)),                                          (1) 

with the constraints 
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𝑢(𝑡, 𝑥) ∈ 𝑈 ⊂ 𝑅𝑟 , (𝑡, 𝑥) ∈ 𝐷,                                                  (2) 

𝑧(𝑡, 𝑥) = ∫ ∫ 𝑓(𝑡, 𝑥, 𝜏, 𝑠, 𝑧(𝜏, 𝑠), 𝑢(𝜏, 𝑠))𝑑𝑠𝑑𝜏

𝑥

𝑥0

𝑡

𝑡0

.                                      (3) 

Here, 𝜑(𝑎1, … , 𝑎𝑘) is a given continuously differentiable scalar function, 𝑈 is a given, non-

empty, bounded set, 𝑢(𝑡, 𝑥) is a 𝑟-dimensional measurable and bounded control function, and 

𝑓(𝑡, 𝑥, 𝜏, 𝑠, 𝑧, 𝑢) is a given 𝑛-dimensional vector-function, continuous in the set of variables together 

with partial derivatives with respect to 𝑧.  

Each control function with the above properties will be called an admissible control. 

It is assumed that for each given admissible control 𝑢(𝑡, 𝑥), integral equation (3) has a unique 

continuous solution. 

The admissible control (𝑢(𝑡, 𝑥), 𝑧(𝑡, 𝑥)), which is the solution to the set problem, will be called 

an optimal process. 

Let us proceed to the derivation of the necessary optimality conditions in the problem under 

investigation. 

 

3. An analogue of L.S. Pontryagin’s maximum principle 

 

Suppose (𝑢(𝑡, 𝑥), 𝑧(𝑡, 𝑥)) is a fixed, and (𝑢̅(𝑡, 𝑥), 𝑧̅(𝑡, 𝑥)) arbitrary admissible processes.  

If we introduce the notation ∆𝑢(𝑡, 𝑥) = 𝑢̅(𝑡, 𝑥) − 𝑢(𝑡, 𝑥), ∆𝑧(𝑡, 𝑥) = 𝑧̅(𝑡, 𝑥) − 𝑧(𝑡, 𝑥), we get 

from (3) that the increment ∆𝑧(𝑡, 𝑥) of the state 𝑧(𝑡, 𝑥) is a solution to the integral equation 

∆𝑧(𝑡, 𝑥) = ∫ ∫[𝑓(𝑡, 𝑥, 𝜏, 𝑠, 𝑧̅(𝜏, 𝑠), 𝑢̅(𝜏, 𝑠)) − 𝑓(𝑡, 𝑥, 𝜏, 𝑠, 𝑧(𝜏, 𝑠), 𝑢(𝜏, 𝑠))]𝑑𝑠𝑑𝜏

𝑥

𝑥0

𝑡

𝑡0

.      (4) 

Suppose 𝜓(𝑡, 𝑥) is an as yet arbitrary 𝑛-dimensional vector-function.  

Multiplying both sides of relation (4) on the left scalarwise by 𝜓(𝑡, 𝑥), and then integrating 

both sides of the resulting relation with respect to 𝐷, we get 

∫ ∫ 𝜓′(𝑡, 𝑥)∆𝑧(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

= 

= ∫ ∫ 𝜓′(𝑡, 𝑥) [ ∫ ∫[𝑓(𝑡, 𝑥, 𝜏, 𝑠, 𝑧̅(𝜏, 𝑠), 𝑢̅(𝜏, 𝑠))

𝑥

𝑥0

𝑡

𝑡0

−

𝑥1

𝑥0

𝑡1

𝑡0

 

−𝑓(𝑡, 𝑥, 𝜏, 𝑠, 𝑧(𝜏, 𝑠), 𝑢(𝜏, 𝑠))]𝑑𝑠𝑑𝜏]𝑑𝑥𝑑𝑡.                                                 (5) 

Here and in what follows, the prime (′) means a transposition operation. 

Applying the Fubini formula (see, e.g., [6]) to the right-hand side of relation (5), we will have  

∫ ∫ 𝜓′(𝑡, 𝑥)∆𝑧(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

= 



V.G. Rzayeva / Informatics and Control Problems 41 Issue 1 (2021) 

      
 

30 

∫ ∫ [∫ ∫ 𝜓′(𝜏, 𝑠)[𝑓(𝜏, 𝑠, 𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥)) −𝑓(𝜏, 𝑠, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥))]

𝑥1

𝑥

𝑡1

𝑡

𝑑𝑥𝑑𝑡] 𝑑𝑠𝑑𝜏

𝑥

𝑥0

𝑡

𝑡0

(6) 

Identity (6) allows us to write down the increment of functional (1) corresponding to the 

admissible controls 𝑢(𝑡, 𝑥) and 𝑢̅(𝑡, 𝑥) in the form 

∆𝑆(𝑢) = 𝑆(𝑢̅) − 𝑆(𝑢) = 𝜑(𝑧̅(𝑇1, 𝑋1), 𝑧̅(𝑇2, 𝑋2), … , 𝑧̅(𝑇𝑘, 𝑋𝑘)) − 

−𝜑(𝑧(𝑇1, 𝑋1), 𝑧(𝑇2, 𝑋2), … , 𝑧(𝑇𝑘, 𝑋𝑘)) + ∫ ∫ 𝜓′(𝑡, 𝑥)∆𝑧(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

− 

− ∫ ∫ [∫ ∫ 𝜓′(𝜏, 𝑠)[𝑓(𝜏, 𝑠, 𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥)) −𝑓(𝜏, 𝑠, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥))]𝑑𝑥𝑑𝑡

𝑥1

𝑥

𝑡1

𝑡

] 𝑑𝑠𝑑𝜏

𝑥

𝑥0

𝑡

𝑡0

(7) 

Using the Taylor formula, we obtain the expansions  

𝜑(𝑧̅(𝑇1, 𝑋1), 𝑧̅(𝑇2, 𝑋2), … , 𝑧̅(𝑇𝑘, 𝑋𝑘)) − 𝜑(𝑧(𝑇1, 𝑋1), 𝑧(𝑇2, 𝑋2), … , 𝑧(𝑇𝑘, 𝑋𝑘)) = 

= ∑
𝜕𝜑′(𝑧(𝑇1, 𝑋1), 𝑧(𝑇2, 𝑋2), … , 𝑧(𝑇𝑘 , 𝑋𝑘))

𝜕𝑎𝑖
∆𝑧(𝑇𝑖, 𝑋𝑖) +

𝑘

𝑖=1

𝑜1 (∑‖∆𝑧(𝑇𝑖, 𝑋𝑖)‖

𝑘

𝑖=1

),       (8) 

where ‖𝛼‖ is the norm of the vector 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑛)′ determined from the formula 

‖𝛼‖ = ∑‖𝛼𝑖‖,

𝑘

𝑖=1

  

and 𝑜(𝛼)means that 
𝑜(𝛼)

𝛼
→ 0 at 𝛼 → 0.  

Taking into account expansion (8) in formula (7), we obtain that  

∆𝑆(𝑢) = ∑
𝜕𝜑′(𝑧(𝑇1, 𝑋1), 𝑧(𝑇2, 𝑋2), … , 𝑧(𝑇𝑘, 𝑋𝑘))

𝜕𝑎𝑖
∆𝑧(𝑇𝑖 , 𝑋𝑖) +

𝑘

𝑖=1

 

+ ∫ ∫ 𝜓′(𝑡, 𝑥)∆𝑧(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

− 

− ∫ ∫ [ ∫ ∫ 𝜓′(𝜏, 𝑠)[𝑓(𝜏, 𝑠, 𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥)) −𝑓(𝜏, 𝑠, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥))]𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

] 𝑑𝑠𝑑𝜏

𝑥

𝑥0

𝑡

𝑡0

+ 

+𝑜1 (∑‖∆𝑧(𝑇𝑖, 𝑋𝑖)‖

𝑘

𝑖=1

).                                                      (9) 

From formula (4), denoting characteristic function of the rectangle [𝑡0, 𝑇𝑖] × [𝑥0, 𝑋𝑖] by 

𝛼𝑖(𝑡, 𝑥), we obtain that  
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∆𝑧(𝑇𝑖 , 𝑋𝑖) = ∫ ∫ 𝛼𝑖(𝑡, 𝑥)[𝑓(𝑇𝑖, 𝑋𝑖, 𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥)) −

𝑥1

𝑥0

𝑡1

𝑡0

 

−𝑓(𝑇𝑖, 𝑋𝑖, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥))]𝑑𝑥𝑑𝑡.                                        (10) 

Taking into account expression (10) for ∆𝑧(𝑇𝑖, 𝑋𝑖) in (9), the formula for representing the 

increment of the quality functional is represented in the form  

∆𝑆(𝑢) = ∫ ∫ 𝛼𝑖(𝑡, 𝑥) ∑
𝜕𝜑′(𝑧(𝑇1, 𝑋1), 𝑧(𝑇2, 𝑋2), … , 𝑧(𝑇𝑘 , 𝑋𝑘))

𝜕𝑎𝑖

𝑘

𝑖=1

𝑥1

𝑥0

𝑡1

𝑡0

× 

× [𝑓(𝑇𝑖, 𝑋𝑖, 𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥)) − 𝑓(𝑇𝑖, 𝑋𝑖, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥))]𝑑𝑥𝑑𝑡 + 

+ ∫ ∫ 𝜓′(𝑡, 𝑥)∆𝑧(𝑡, 𝑥)𝑑𝑥𝑑𝑡 −

𝑥1

𝑥0

𝑡1

𝑡0

 

− ∫ ∫ [∫ ∫ 𝜓′(𝜏, 𝑠)[𝑓(𝜏, 𝑠, 𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥)) −𝑓(𝜏, 𝑠, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥))]𝑑𝑥𝑑𝑡

𝑥1

𝑥

𝑡1

𝑡

] 𝑑𝑠𝑑𝜏

𝑥

𝑥0

𝑡

𝑡0

+ 

+𝑜1 (∑‖∆𝑧(𝑇𝑖, 𝑋𝑖)‖

𝑘

𝑖=1

).                                                      (11) 

Let us introduce an analogue of the Pontryagin function for the problem under investigation in 

the form 

𝐻(𝑡, 𝑥, 𝑧, 𝑢, 𝜓) = ∫ ∫ 𝜓′(𝜏, 𝑠)𝑓(𝜏, 𝑠, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥))𝑑𝑠𝑑𝜏

𝑥1

𝑥

𝑡1

𝑡

− 

− ∑ 𝛼𝑖(𝑡, 𝑥)
𝜕𝜑′(𝑧(𝑇1, 𝑋1), 𝑧(𝑇2, 𝑋2), … , 𝑧(𝑇𝑘, 𝑋𝑘))

𝜕𝑎𝑖
𝑓(𝑇𝑖, 𝑋𝑖, 𝑡, 𝑥, 𝑧, 𝑢)

𝑘

𝑖=1

. 

In this case, the formula for increment (11) of the quality criterion takes the form  

∆𝑆(𝑢) = − ∫ ∫ [𝐻(𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥), 𝜓(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))]𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

+ 

+ ∫ ∫ 𝜓′(𝑡, 𝑥)∆𝑧(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

+ 𝑜1 (∑‖∆𝑧(𝑇𝑖, 𝑋𝑖)‖

𝑘

𝑖=1

).                             (12) 

Applying the Taylor formula to the difference  

𝐻(𝑡, 𝑥, 𝑧̅, 𝑢̅, 𝜓) − 𝐻(𝑡, 𝑥, 𝑧, 𝑢, 𝜓), 

we arrive at the expansion 

𝐻(𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥), 𝜓(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥)) = 
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= 𝐻𝑧
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥), 𝜓(𝑡, 𝑥)) + 𝑜2(‖∆𝑧(𝑡, 𝑥)‖).                                 (13) 

Further, taking into account expansion (13) in (12) and grouping similar terms after some 

transformations, we will have 

∆𝑆(𝑢) = ∫ ∫ 𝜓′(𝑡, 𝑥)∆𝑧(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

− ∫ ∫ 𝐻𝑧
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))∆𝑧(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

− 

− ∫ ∫ [𝐻(𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥), 𝜓(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))]𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

− 

− ∫ ∫ [𝐻𝑧
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥), 𝜓(𝑡, 𝑥)) − 𝐻𝑧

′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))]∆𝑧(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

+ 

+𝑜1 (∑‖∆𝑧(𝑇𝑖, 𝑋𝑖)‖

𝑘

𝑖=1

) − ∫ ∫ 𝑜2(‖∆𝑧(𝑡, 𝑥)‖)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

.                             (14) 

Assuming that the vector function 𝜓(𝑡, 𝑥) satisfies the relation  

𝜓(𝑡, 𝑥) = 𝐻𝑧(𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥)).                                  (15) 

Then from (14) we obtain that 

∆𝑆(𝑢) = − ∫ ∫ [𝐻(𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥), 𝜓(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))]𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

− 

− ∫ ∫ [𝐻𝑧
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥), 𝜓(𝑡, 𝑥)) − 𝐻𝑧

′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))]∆𝑧(𝑡, 𝑥)𝑑𝑥𝑑𝑡 +

𝑥1

𝑥0

𝑡1

𝑡0

 

+𝑜1 (∑‖∆𝑧(𝑇𝑖, 𝑋𝑖)‖

𝑘

𝑖=1

) − ∫ ∫ 𝑜2(‖∆𝑧(𝑡, 𝑥)‖)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

.                             (16) 

Relation (15) is a linear inhomogeneous Volterra integral equation, which, following, e.g., [1-

3], we call the conjugate system for the considered control problem. 

The constructed formula for increment (16) makes it possible to establish the necessary 

optimality condition. 

Proceeding from (4) to the norm and using the triangle rule, after some transformations we 

obtain that  

‖∆𝑧(𝑡, 𝑥)‖ ≤ 𝐾1 [ ∫ ∫‖𝑓(𝑡, 𝑥, 𝜏, 𝑠, 𝑧(𝜏, 𝑠), 𝑢̅(𝜏, 𝑠)) − (𝑡, 𝑥, 𝜏, 𝑠, 𝑧(𝜏, 𝑠), 𝑢(𝜏, 𝑠))‖𝑑𝑠𝑑𝜏

𝑥

𝑥0

𝑡

𝑡0

+ 

 + ∫ ∫‖∆𝑧(𝜏, 𝑠)‖𝑑𝑠𝑑𝜏

𝑥 

𝑥0

𝑡 

𝑡0

], 
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where 𝐾1 = 𝑐𝑜𝑛𝑠𝑡 > 0 is some constant.  

Applying the Gronwall-Wendorff lemma to the last inequality (see, e.g., [6]), we arrive at the 

required estimate: 

‖∆𝑧(𝑡, 𝑥)‖ ≤ 𝐾2 ∫ ∫ ‖𝑓(𝑡1, 𝑥1, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢̅(𝑡, 𝑥)) − 𝑓(𝑡1, 𝑥1, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥))‖𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

, 

𝐾2 = 𝑐𝑜𝑛𝑠𝑡 > 0.                                                                    (17) 

Suppose (𝜃, 𝜉) ∈ [𝑡0, 𝑡1) × [𝑥0, 𝑥1) is an arbitrary regular point (Lebesgue point) (see, e.g., 

[1,6]) of the control 𝑢(𝑡, 𝑥), 𝑣 ∈ 𝑈 is an arbitrary vector, and 𝜀 > 0 is an arbitrary sufficiently small 

number such that 𝜃 + 𝜀 < 𝑡1, 𝜉 + 𝜀 < 𝑥1.  

Special increment of the admissible control 𝑢(𝑡, 𝑥) will be determined from the formula 

∆𝑢𝜀(𝑡, 𝑥) = {
𝑣 − 𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐷𝜀 = [𝜃, 𝜃 + 𝜀) × [ 𝜉, 𝜉 + 𝜀),

0,                                         (𝑡, 𝑥) ∈ 𝐷\𝐷𝜀 .                    
           (18) 

Denote by ∆𝑧𝜀(𝑡, 𝑥) the special increment of the state 𝑧(𝑡, 𝑥) corresponding to the special 

increment (18) of the control 𝑢(𝑡, 𝑥). 

It follows from estimate (17) that 

‖∆𝑧𝜀(𝑡, 𝑥)‖ ≤ 𝐾3𝜀2, (𝑡, 𝑥) ∈ 𝐷,                                         (19) 

where 𝐾3 = 𝑐𝑜𝑛𝑠𝑡 > 0 is some constant. 

Taking into account (18), (19) from (16), by the mean value theorem, we obtain a special 

increment of the quality functional in the form 

𝑆(𝑢 + ∆𝑢𝜀) − 𝑆(𝑢) = 

= −𝜀2[𝐻(𝜃, 𝜉, 𝑧(𝜃, 𝜉), 𝑣, 𝜓(𝜃, 𝜉)) − 𝐻(𝜃, 𝜉, 𝑧(𝜃, 𝜉), 𝑢(𝜃, 𝜉), 𝜓(𝜃, 𝜉))] + 𝑜 (𝜀2).  (20) 

By virtue of arbitrariness and sufficient smallness of 𝜀 > 0, expansion (20) implies the 

following statement. 

Theorem 1. The optimality of the admissible control 𝑢(𝑡, 𝑥) requires that the relation  

max
 𝑣∈𝑈

𝐻(𝜃, 𝜉, 𝑧(𝜃, 𝜉), 𝑣, 𝜓(𝜃, 𝜉)) = 𝐻(𝜃, 𝜉, 𝑧(𝜃, 𝜉), 𝑢(𝜃, 𝜉), 𝜓(𝜃, 𝜉))                 (21) 

hold for all (𝜃, 𝜉) ∈ [𝑡0, 𝑡1) × [𝑥0, 𝑥1). 

Relation (21) is an analogue of Pontryagin's maximum condition in the problem under 

investigation, being a first-order necessary optimality condition. 

Under some additional assumptions, we can obtain a linearized necessary optimality condition. 

 

4. Linearized maximum principle 

 

Suppose the set 𝑈 is convex, and 𝑓(𝑡, 𝑥, 𝜏, 𝑠, 𝑧, 𝑢) is continuousin the totality of variables 

together with partial derivatives with respect to (𝑧, 𝑢). Then we can write that 

𝐻(𝑡, 𝑥, 𝑧̅, 𝑢̅, 𝜓) − 𝐻(𝑡, 𝑥, 𝑧, 𝑢, 𝜓) = 

= 𝐻𝑧
′ (𝑡, 𝑥, 𝑧, 𝑢, 𝜓)∆𝑧 + 𝐻𝑢

′ (𝑡, 𝑥, 𝑧, 𝑢, 𝜓)∆𝑢 + 𝑜3(‖∆𝑧‖ + ‖∆𝑢‖).                      (22) 

Taking into account the expansion (22), in increment formula (12) and taking into account (15), 

we obtain that 
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∆𝑆(𝑢) = − ∫ ∫ 𝐻𝑢
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))∆𝑢(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

+ 

+𝑜1 (∑‖∆𝑧(𝑇𝑖, 𝑋𝑖)‖

𝑘

𝑖=1

) + ∫ ∫ 𝑜3(‖∆𝑧(𝑡, 𝑥)‖ + ‖∆𝑢(𝑡, 𝑥)‖)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

.                 (23) 

From (4) it turns out that  

‖∆𝑧(𝑡, 𝑥)‖ ≤ 𝐾4 [ ∫ ∫‖∆𝑢(𝜏, 𝑠)‖𝑑𝑠𝑑𝜏 +

𝑥 

𝑥0

𝑡 

𝑡0

∫ ∫‖∆𝑧(𝜏, 𝑠)‖𝑑𝑠𝑑𝜏

𝑥 

𝑥0

𝑡 

𝑡0

],                                    (24) 

where 𝐾4 = 𝑐𝑜𝑛𝑠𝑡 > 0 is some constant. 

Applying the Gronwall-Wendorff lemma to inequality (24), we obtain the estimate 

‖∆𝑧(𝑡, 𝑥)‖ ≤ 𝐾5 ∫ ∫ ‖∆𝑢(𝜏, 𝑠)‖𝑑𝑠𝑑𝜏

𝑥 1

𝑥0

𝑡1 

𝑡0

,                                        (25) 

where 𝐾5 = 𝑐𝑜𝑛𝑠𝑡 > 0 is some constant. 

Assuming that 𝜇 ∈ [0,1] is an arbitrary number, and 𝑣(𝑡, 𝑥) ∈ 𝑈, (𝑡, 𝑥) ∈ 𝐷 is an arbitrary 

admissible control, the special increment of the control  𝑢(𝑡, 𝑥) will be determined from the formula  

∆𝑢𝜇(𝑡, 𝑥) = 𝜇[𝑣(𝑡, 𝑥) − 𝑢(𝑡, 𝑥)], (𝑡, 𝑥) ∈ 𝐷.                                (26) 

This is possible due to the convexity of the set 𝑈. 
Suppse ∆𝑧𝜇(𝑡, 𝑥) is a special increment of the state 𝑧(𝑡, 𝑥), corresponding to special increment 

(26) of the control. It follows from estimate (25) that  

‖∆𝑧𝜇(𝑡, 𝑥)‖ ≤ 𝐾5𝜇 ∫ ∫ ‖𝑣(𝜏, 𝑠) − 𝑢(𝜏, 𝑠)‖𝑑𝑠𝑑𝜏

𝑥1

𝑥0

𝑡1

𝑡0

.                                (27) 

Taking into account (26) and (27) in (23), we obtain that  

𝑆(𝑢 + ∆𝑢𝜇) − 𝑆(𝑢) = 

= −𝜇 ∫ ∫ 𝐻𝑢
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))(𝑣(𝑡, 𝑥) − 𝑢(𝑡, 𝑥))𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

.               (28) 

From expansion (28) follows 

Theorem 2. If the set 𝑈 is convex, then the optimality of the admissible control 𝑢(𝑡, 𝑥) requires 

that the inequality 

∫ ∫ 𝐻𝑢
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))(𝑣(𝑡, 𝑥) − 𝑢(𝑡, 𝑥))𝑑𝑥𝑑𝑡 ≤ 0,                          (29)

𝑥1

𝑥0

𝑡1

𝑡0

 

hold for all 𝑣(𝑡, 𝑥) ∈ 𝑈, (𝑡, 𝑥) ∈ 𝐷.  
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The proved necessary optimality condition (29) is an analogue of the linearized integral 

maximum condition. Using the scheme, e.g., from [15], a pointwise necessary optimality condition 

is proved.  

Corollary. If the set 𝑈 is convex, then the optimality of the admissible control 𝑢(𝑡, 𝑥) requires 

that the condition  

 max
 𝑣∈𝑈

𝐻𝑢
′ (𝜃, 𝜉, 𝑧(𝜃, 𝜉), 𝑣, 𝜓(𝜃, 𝜉)) = 𝐻𝑢

′ (𝜃, 𝜉, 𝑧(𝜃, 𝜉), 𝑢(𝜃, 𝜉), 𝜓(𝜃, 𝜉))                 (30) 

hold for all 𝑣(𝜃, 𝜉) ∈ [𝑡0, 𝑡1) × [𝑥0, 𝑥1). 

Inequality (30) is an analogue of the linearized (integral) [2] maximum principle. 

 

4. An analogue of the Euler equation 
 

Suppose the set 𝑈 in the problem under investigation is open, and 𝜀 is an an arbitrary number 

sufficiently small in absolute value. Under the assumptions made, the special increment of the 

admissible control can be determined from the formula  

∆𝑢𝜀(𝑡, 𝑥) = 𝜀𝛿𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐷,                                          (31)  

where 𝛿𝑢(𝑡, 𝑥) ∈ 𝑅𝑟 , (𝑡, 𝑥) ∈ 𝐷 is an arbitrary measurable and bounded 𝑟-dimensional vector-

function (admissible variation of the control 𝑢(𝑡, 𝑥)). 

Taking into account estimate (24), as well as formula (31) in (23), we arrive at the expansion  

𝑆(𝑢 + 𝜀𝛿𝑢) − 𝑆(𝑢) = 

= −𝜀 ∫ ∫ 𝐻𝑢
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))𝛿𝑢(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

+ 𝑜(𝜀).              (32) 

It follows from expansion (32) that the first variation (in the classical sense) of functional (1) 

has the form: 

𝛿1𝑆(𝑢; 𝛿𝑢) = − ∫ ∫ 𝐻𝑢
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))𝛿𝑢(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

.           (33) 

From (33), based on the main result of the classical calculus of variations (see, e.g., [16, 17]) it 

follows that if 𝑢(𝑡, 𝑥) is an optimal control, then for all admissible variations 𝛿𝑢(𝑡, 𝑥) of the control 

𝑢(𝑡, 𝑥), the following identity takes place: 

∫ ∫ 𝐻𝑢
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))𝛿𝑢(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

= 0

𝑡1

𝑡0

.                        (34) 

Identity (34) is an implicit necessary first-order optimality condition. From it, we can obtain 

the necessary optimality condition in the form of the Euler equation [16,17].  

We have 

Theorem 3. If the set  𝑈 is open, then the optimality of the admissible control 𝑢(𝑡, 𝑥) requires 

that the relation  

𝐻𝑢
 (𝜃, 𝜉, 𝑧(𝜃, 𝜉), 𝑢(𝜃, 𝜉), 𝜓(𝜃, 𝜉)) = 0                                             (35) 

hold for all (𝜃, 𝜉) ∈ [𝑡0, 𝑡1) × [𝑥0, 𝑥1).  

Proof. Let us assume the opposite. Suppose there is a point (𝜃̅, 𝜉̅) ∈ [𝑡0, 𝑡1] × [𝑥0, 𝑥1] and a 

number𝑠 (1 ≤ 𝑠 ≤ 𝑛) such as 
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𝐻𝑢𝑠
 (𝜃̅, 𝜉̅, 𝑧(𝜃̅, 𝜉̅), 𝑢(𝜃̅, 𝜉̅), 𝜓(𝜃̅, 𝜉̅)) = 𝛼 ≠ 0. 

Now the coordinates of the admissible variation 𝛿𝑢(𝑡, 𝑥) = (𝛿𝑢1, 𝛿𝑢2, … , 𝛿𝑢𝑟)′ will be 

determined as follows: 

𝛿𝑢𝑖(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝐷, 𝑖 ≠ 𝑠, 

𝛿𝑢𝑠(𝑡, 𝑥) = 𝐻𝑢𝑠
 (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥)) ,                                        (36) 

at (𝑡, 𝑥) ∈ [𝜃̅, 𝜃̅ + 𝜀) × [ 𝜉̅, 𝜉̅ + 𝜀). 

𝛿𝑢𝑠(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝐷\[𝜃̅, 𝜃̅ + 𝜀) × [ 𝜉̅, 𝜉̅ + 𝜀)  

where 𝜀 > 0 is an arbitrary sufficiently small number. 

Then we get that if the variation 𝛿𝑢(𝑡, 𝑥) of the control 𝑢(𝑡, 𝑥) is determined from formula (36), 

then we get that  

∫ ∫ 𝐻𝑢
′ (𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))𝛿𝑢(𝑡, 𝑥)𝑑𝑥𝑑𝑡

𝑥1

𝑥0

𝑡1

𝑡0

= 

= ∫ ∫ [
𝜕𝐻(𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡, 𝑥), 𝜓(𝑡, 𝑥))𝛿𝑢(𝑡, 𝑥)

𝜕𝑢𝑠
]

2𝜉+𝜀

𝜉

𝜃+𝜀

𝜃

= 𝜀2𝛼2 + 𝑜(𝜀2) ≠ 0. 

This contradicts the optimality condition (34). We get a contradiction. This proves the theorem. 

 

The author is grateful to Assoc.Prof. R.O. Mastaliyev for useful comments. 

 

5. Conclusion 

 

In the problem under investigation, the multipoint nature of the quality functional complicates 

its study. Applying one version of the increment method, by means of the constructed formulas for 

increments of the quality criterion under various assumptions, a number of necessary optimality 

conditions of a constructive nature have been established. 
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