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This paper discusses some new directions and results, obtained in joint 

work with Pham Duy Khanh (Ho Chi Minh City University of Education, 

Vietnam) and Dat Ba Tran (Rowan University, USA), for models of 

derivative-free optimization (DFO) with nonconvex data. We overview 

several approaches to DFO problems and focus on finite-difference 

approximation schemes. Our algorithms address the two major classes: 

objective functions with globally Lipschitzian and locally Lipschitzian 

gradients, respectively. Global convergence results with constructive 

convergence rates are established for both cases in noiseless and noisy 

environments. The developed algorithms in the noiseless case are based 

on the backtracking line search and achieves fundamental convergence 

properties. The noisy version is essentially more involved being based on 

the novel dynamic step line search. Numerical experiments demonstrate 

higher robustness of the proposed algorithms compared with other finite-

difference-based schemes. 
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1. Introduction 

 

We consider here standard unconstrained optimization problem (P) defined by 

 minimize 𝑓(𝑥)  subject to  𝑥 ∈ ℝ𝑛, 

where 𝑓:ℝ𝑛 → ℝ is a continuously differentiable (i.e., 𝒞1-smooth) function that may not be convex. 

Derivative-free optimization means that there is no available information about ∇𝑓 but only about 

either 𝑓 (noiseless case), or its approximation 𝜙 = 𝑓 + 𝜉 (noisy case). Over the years, problems of 

this type have drawn strong attention in optimization theory and applications; see, e.g., [1-5] with the 

references therein. Among various approaches to DFO, we concentrate below on optimization 

algorithms involving finite-difference approximations, which are less investigated while showing to 

be very promising from both viewpoints of optimization theory and applications; see [4], [5] among 

other recent publications. 

The noiseless case is more direct to handle by finite-difference approximations since a fixed 

mesh interval can be used in discretization. However, known results obtained in this way for DFO 

have not yet achieved desired convergence properties as for standard gradient descent methods. One 

of the reasons for this is that derivative-free methods based on finite-difference approximations may 

not produce descent directions without careful adaptive modifications. Dealing with DFO models in 

the presence of noise is much more complicated, and the usage of finite-difference approximations 

may significantly increase computational costs. 

To address these issues in both noiseless and noisy cases, we first consider objective functions 

𝑓 of class 𝒞𝐿
1,1

, i.e., such that ∇𝑓 is globally Lipschitz continuous on ℝ𝑛 with constant 𝐿. The proposed 
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method is labeled as a derivative-free method with constant stepsize (DFC). In the noiseless case, the 

proposed DFC exhibits global convergence with constructive convergence rates under natural 

conditions including Polyak-Łojasiewicz-Kurdyka (PLK) properties; see [6] for more details. In the 

noisy case, DFC provides finite convergence to an explicitly defined near-stationary point by 

estimating the number of iterates needed to reach such a point. In contrast to known methods, a crucial 

feature of DFC is a simultaneous adjustment, at each iteration, of the Lipschitz constant of the 

objective function with the stepsize of the finite-difference approximation. 

The class of 𝒞1,1 functions (i.e., those with locally Lipschitzian gradients) is rather new in the 

DFO literature; see [5] for detailed discussions. This framework allows us to efficiently investigate 

not only global but also local convergence and convergence rates under the corresponding PLK 

conditions. The most difficult case of large noise in DFO problems with 𝒞1,1 objectives is now 

handled by using a dynamic step line search, where an approximate Lipschitz constant is used to 

determine both the stepsize and the finite-difference interval. The conducted numerical experiments 

for various problems arising in machine learning, statistics, artificial intelligence, etc. demonstrate 

high efficiency of the proposed algorithms to solve practical models. 

In what follows, we consider separately DFO algorithms and convergence results for classes of 

𝒞𝐿
1,1

 and 𝒞1,1 objective functions in both noiseless and noisy cases. 

 

2. Derivative-Free methods for 𝓒𝑳
𝟏,𝟏

 objectives 

 

Given a 𝒞1-smooth function 𝑓:ℝ𝑛 → ℝ, we say that a mapping 𝒢:ℝ𝑛 × (0,∞) → ℝ𝑛 is a 

global approximation of ∇𝑓 if there exist a constant 𝐶 > 0 such that 

∥∥𝒢(𝑥, 𝛿) − ∇𝑓(𝑥)∥∥ ≤ 𝐶𝛿  for any  (𝑥, 𝛿) ∈ ℝ𝑛 × (0,∞). 

𝒢 is a local approximation of ∇𝑓 if for any bounded set Ω ⊂ ℝ𝑛 and any Δ > 0, there exists 𝐶 > 0 

with 

∥∥𝒢(𝑥, 𝛿) − ∇𝑓(𝑥)∥∥ ≤ 𝐶𝛿  for any  (𝑥, 𝛿) ∈ Ω × (0, Δ]. 

For 𝑓 ∈ 𝒞𝐿
1,1

, design the following derivative-free method with constant stepsize (DFC) in the 

noiseless case. 
 

Algorithm DFC-noiseless 

Step 1. Choose a global approximation 𝒢 of ∇𝑓. Select an initial point 𝑥1 ∈ ℝ𝑛, an initial sampling 

radius 𝛿1 > 0, a constant 𝐶1 > 0, a reduction factor 𝜃 ∈ (0,1), and scaling factors 𝜇 > 2, 𝜂 > 1, 𝜅 >
0. Set 𝑘 := 1. 
Step 2. Find 𝑔𝑘 and the smallest nonnegative integer 𝑖𝑘 such that 𝑔𝑘 = 𝒢(𝑥𝑘, 𝜃𝑖𝑘𝛿𝑘) and ∥∥𝑔𝑘∥∥ >
𝜇𝐶𝑘𝜃

𝑖𝑘𝛿𝑘. Then set 𝛿𝑘+1 : = 𝜃𝑖𝑘𝛿𝑘. 

Step 3. If 𝑓 (𝑥𝑘 −
𝜅

𝐶𝑘
𝑔𝑘) ≤ 𝑓(𝑥𝑘) −

𝜅(𝜇−2)

2𝐶𝑘𝜇
∥∥𝑔𝑘∥∥

2
, then 𝑥𝑘+1 : = 𝑥𝑘 −

𝜅

𝐶𝑘
𝑔𝑘 and 𝐶𝑘+1 : = 𝐶𝑘. 

Otherwise, set 𝑥𝑘+1 : = 𝑥𝑘 and 𝐶𝑘+1 : = 𝜂𝐶𝑘. 
Recall that the PLK condition holds for a differentiable function 𝑓:ℝ𝑛 → ℝ at 𝑥‾ if there are 

𝜂 > 0, a neighborhood 𝑈 of 𝑥‾, and a nondecreasing function 𝜓: (0, 𝜂) → (0,∞) for which 1/𝜓 is 

integrable over (0, 𝜂) and 

∥∥∇𝑓(𝑥)∥∥ ≥ 𝜓(𝑓(𝑥) − 𝑓(𝑥‾))  when  𝑥 ∈ 𝑈  with  𝑓(𝑥‾) < 𝑓(𝑥) < 𝑓(𝑥‾) + 𝜂. 

The exponential PLK condition holds if 𝜓(𝑡) = 𝑀𝑡𝑞 with some 𝑀 > 0 and 𝑞 ∈ [0,1). 

Theorem 1. Let {𝑥𝑘} be the sequence generated by Algorithm DFC-noiseless with ∇𝑓(𝑥𝑘) ≠ 0 for 

all 𝑘 ∈ ℕ. We have that either 𝑓(𝑥𝑘) → −∞ as 𝑘 → ∞, or: 
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(i) The gradient sequence {∇𝑓(𝑥𝑘)} converges to 0 as 𝑘 → ∞. 

(ii) If 𝑓 satisfies the PLK condition at some accumulation point 𝑥‾ of {𝑥𝑘}, then 𝑥𝑘 → 𝑥‾ as 𝑘 →
∞. 

(iii) If the exponential PLK conditions holds with some 𝑀 > 0 and 𝑞 ∈ [1/2,1), then we have 

the following convergence rates for {𝑥𝑘}: 
• For 𝑞 = 1/2, the sequences {𝑥𝑘}, {∇𝑓(𝑥𝑘)}, and {𝑓(𝑥𝑘)} converge linearly to 𝑥‾, 0, and 𝑓(𝑥‾), 

respectively. 

• For 𝑞 ∈ (1/2,1), the convergence rates are 

∥∥𝑥𝑘 − 𝑥‾∥∥ = 𝒪 (𝑘
−
1−𝑞
2𝑞−1) ,  

∥∥∇𝑓(𝑥𝑘)∥∥ = 𝒪 (𝑘
−
1−𝑞
2𝑞−1) ,   𝑓(𝑥𝑘) − 𝑓(𝑥‾) = 𝒪 (𝑘

−
2−2𝑞
2𝑞−1). 

Consider now the noisy case 𝜙 = 𝑓 + 𝜉 with a bounded noise function |𝜉(𝑥)| ≤ 𝜉𝑓 (which is 

not assumed to be known) on ℝ𝑛 and construct, by using the basic vectors 𝑒𝑖in ℝ𝑛, the gradient 

approximation 

𝒢̃(𝑥, 𝛿) : =
1

𝛿
∑(𝜙(𝑥 + 𝛿𝑒𝑖) − 𝜙(𝑥))

𝑛

𝑖=1

𝑒𝑖  for  (𝑥, 𝛿) ∈ ℝ𝑛 × (0,∞). 

Algorithm DFC-noise 

Step 1. Select some 𝑥1 ∈ ℝ𝑛, 𝛿1 > 0, 𝐿1 > 0,  𝜃 ∈ (0,1), and 𝜂 > 1. 

Step 2. Find 𝑔𝑘 and the smallest nonnegative integer 𝑖𝑘 satisfying 𝑔𝑘 = 𝒢̃(𝑥𝑘 , 𝜃𝑖𝑘𝛿𝑘)  and  ∥∥𝑔𝑘∥∥ >

2𝐿𝑘√𝑛𝜃
𝑖𝑘𝛿𝑘 and then set 𝛿𝑘+1 : = 𝜃𝑖𝑘𝛿𝑘. 

Step 3. If 𝜙 (𝑥𝑘 −
1

𝐿𝑘
𝑔𝑘) ≤ 𝜙(𝑥𝑘) −

1

24𝐿𝑘
∥∥𝑔𝑘∥∥

2
, then set 𝑥𝑘+1 : = 𝑥𝑘 −

1

𝐿𝑘
𝑔𝑘 and 𝐿𝑘+1 : = 𝐿𝑘. 

Otherwise, set 𝑥𝑘+1 : = 𝑥𝑘 and 𝐿𝑘+1 : = 𝜂𝐿𝑘. 

Theorem 2. Let the sequence {𝑥𝑘} be generated by Algorithm DFC-noise with 𝛿1 ≥ √
4𝜉𝑓

𝐿
 and 𝐿1 <

𝜂𝐿. Then the number 𝑁 of iterations that Algorithm DFC-noise takes until ∥∥∇𝑓(𝑥𝑁)∥∥ < 16√𝐿𝑛𝜉𝑓 is 

bounded by 

𝑁 ≤ 𝑁 opt : = 1 + ⌊
𝑓(𝑥1) − 𝑓∗ + 2𝜉𝑓

𝑀𝜉𝑓
⌋ + ⌊log𝜂 (

𝜂𝐿

𝐿1
)⌋ ,    

where 𝑀 :=
15𝑛𝐿1

2

𝜂(𝐿+4𝐿1)2
.The total number 𝑁 fval of function evaluations needed to achieve this goal is 

bounded by 

𝑁 ftal ≤ (𝑛 + 2)𝑁 opt + 𝑛 ⌊log𝜃 (
2√𝜉𝑓

𝛿1√𝐿
)⌋. 

III. Derivative-Free methods with 𝓒𝟏,𝟏 objectives 

Consider first the noiseless case and design the following derivative-free method with backtracking 

stepsize (DFB). 
 

Algorithm DFB-noiseless 

Step 7. Choose a local approximation 𝒢 of ∇𝑓 and select an initial point 𝑥1 ∈ ℝ𝑛 and initial radius 

𝛿1 > 0, a constant 𝐶1 > 0, factors 𝜃 ∈ (0,1), 𝜇 > 2,  𝜂 > 1, line search constants 𝛽 ∈ (0,1/2), 𝛾 ∈
(0,1), 𝜏‾ > 0, and an initial bound 𝑡1

min ∈ (0, 𝜏‾). Choose a sequence of errors {𝜈𝑘} ⊂ [0,∞) with 

𝜈𝑘 ↓ 0 as 𝑘 → ∞ and set 𝑘 := 1. 

Step 1. Select 𝑔𝑘 and the smallest nonnegative integer 𝑖𝑘 satisfying 𝑔𝑘 =

𝒢(𝑥𝑘 , min{𝜃𝑖𝑘𝛿𝑘, 𝜈𝑘})  and  ∥∥𝑔𝑘∥∥ > 𝜇𝐶𝑘𝜃
𝑖𝑘𝛿𝑘 and then set 𝛿𝑘+1 : = 𝜃𝑖𝑘𝜃𝑘. 
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Step 2. Set stepsize 𝑡𝑘 : = 𝜏‾ and then take 𝑡𝑘 : = 𝛾𝑡𝑘 while 𝑓(𝑥𝑘 − 𝑡𝑘𝑔
𝑘) > 𝑓(𝑥𝑘) − 𝛽𝑡𝑘∥∥𝑔

𝑘∥∥
2
 and 

𝑡𝑘 ≥ 𝑡𝑘
min, 

Step 3. If 𝑡𝑘 ≥ 𝑡𝑘
min, set 𝜏𝑘 : = 𝑡𝑘, 𝐶𝑘+1 : = 𝐶𝑘 and 𝑡𝑘+1

min : = 𝑡𝑘
min. Otherwise, set 𝜏𝑘 : = 0, 𝐶𝑘+1

: = 𝜂𝐶𝑘 and 𝑡𝑘+1
min : = 𝛾𝑡𝑘

min. 

Step 4. Set 𝑥𝑘+1 : = 𝑥𝑘 − 𝜏𝑘𝑔
𝑘. Increase 𝑘 by 1 and go back to Step 1. 

Theorem 3. Let {𝑥𝑘} be generated by Algorithm DFB-noiseless with ∇𝑓(𝑥𝑘) ≠ 0 for all 𝑘 ∈ ℕ. Then 

either 𝑓(𝑥𝑘) → −∞ as 𝑘 → ∞, or we have: 

(i) Every accumulation point of {𝑥𝑘} is a stationary point of 𝑓. 

(ii) If {𝑥𝑘} is bounded, then the collection of accumulation points of {𝑥𝑘} is nonempty, compact, 

and connected in ℝ𝑛. 

(iii) If {𝑥𝑘} has an isolated accumulation point 𝑥‾, then this sequence converges to 𝑥‾ as 𝑘 → ∞. 

Imposing the PLK conditions on 𝑓 as in Theorem 1 allows us to establish global convergence and 

convergence rates for Algorithm DFB-noiseless that are similar to Algorithm DFC-noiseless in 

Theorem 1. 
 

Next we continue the study of problem (𝑃) with the objective function 𝑓:ℝ𝑛 → ℝ of class 𝒞1,1, 

where only a noisy approximation 𝜙(𝑥) = 𝑓(𝑥) + 𝜉(𝑥) of 𝑓 is available. Using the forward finite 

difference 𝒢̃(𝑥, 𝛿) as in Section II, we design the following derivative-free method with dynamic step 

line search (DFD), whose crucial property is a dynamic step line search to construct the stepsize 

together with the finite-difference interval. 

Algorithm DFD-noise 

Step 1 (initialization). Select an initial point 𝑥1 ∈ ℝ𝑛, 𝜂 > 1, and 𝐿1 > 0. Set 𝑘 := 1. 

Step 2. Find an integer number 𝑖𝑘 with the smallest absolute value such that for 𝑔𝑘 : = 𝒢̃ (𝑥𝑘 , √
4𝜉𝑓

𝜂𝑖𝑘𝐿𝑘
) 

and 𝜏𝑘 =
1

𝜂𝑖𝑘𝐿𝑘
, we have the estimate 𝜙(𝑥𝑘 − 𝜏𝑘𝑔

𝑘) ≤ 𝜙(𝑥𝑘) −
𝜏𝑘

9
∥∥𝑔𝑘∥∥

2
. 

Step 3. Set 𝑥𝑘+1 : = 𝑥𝑘 − 𝜏𝑘𝑔
𝑘 and 𝐿𝑘+1 : = 𝜂𝑖𝑘𝐿𝑘. 

We say that Step 1 of Algorithm DFD-noise is successful if the integer number 𝑖𝑘 can be found. The 

next theorem provides a constructive condition for the successful step and allows us to estimate a 

number of iterations needed to reach an almost-stationary point. 

Theorem 4. Let ℓ𝑘 be a constant of the Lipschitz continuity of ∇𝑓 on 

𝔹(𝑥𝑘 , max {
3

2ℓ𝑘
∥∥∇𝑓(𝑥𝑘)∥∥, √

4𝜉𝑓

ℓ𝑘
}) at the 𝑘 th iteration of Algorithm DFD-noise. Then the condition 

∥∥∇𝑓(𝑥𝑘)∥∥ ≥ 8√ℓ𝑘𝜂𝑛𝜉𝑓 

ensures that Step 1 of Algorithm DFD-noise is successful. Suppose in addition that there is 𝐿 > 0 

such that ∇𝑓 is Lipschitz continuous with constant 𝐿 on ⋃𝑘=1
∞ 𝔹(𝑥𝑘, max {

3

2𝐿
∥∥∇𝑓(𝑥𝑘)∥∥, √

4𝜉𝑓

𝐿
}). If 

in this case inf𝑘∈ℕ𝑓(𝑥
𝑘) > −∞ and for some 𝐾 ∈ ℕ we have 𝐿𝐾 ∈ [𝐿, 𝜂𝐿), then the following hold: 

(i) There exists 𝑁 ∈ ℕ for which 

∥∥∇𝑓(𝑥𝑁)∥∥ < 8√𝐿𝜂𝑛𝜉𝑓 . 

(ii) If furthermore 𝑓 admits a global minimizer with the minimum value 𝑓 < 𝑓(𝑥𝐾) and 𝑓 

satisfies the exponential PLK condition with some 𝜇 > 0 and 𝑞 = 1/2, then the number 𝑁 ensuring 

(i) is upper estimated by 
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𝑁 ≤ max {1 + 𝐾, 1 + 𝐾 + log
1−

3𝜇
16𝜂𝐿

(
32𝜂𝑛𝜉𝑓

𝑓(𝑥𝐾) − 𝑓‾
)}. 

 

A large number of conducted numerical experiments confirm the efficiency of the proposed 

algorithms and their advantages in applications to practical models. 

 

3. Conclusion 
 

This presentation describes several efficient algorithms to solve problems of smooth nonconvex 

derivative-free optimization with global and local Lipschitzian gradients of the objective functions. 

The proposed algorithms are separately designed in both noiseless and noisy cases for the minimizing 

functions. 
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