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objective functions with globally Lipschitzian and locally Lipschitzian
gradients, respectively. Global convergence results with constructive
convergence rates are established for both cases in noiseless and noisy
environments. The developed algorithms in the noiseless case are based
on the backtracking line search and achieves fundamental convergence
properties. The noisy version is essentially more involved being based on
the novel dynamic step line search. Numerical experiments demonstrate
higher robustness of the proposed algorithms compared with other finite-
difference-based schemes.
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1. Introduction

We consider here standard unconstrained optimization problem (P) defined by
minimize f(x) subjectto x € R",

where f: R™ - R is a continuously differentiable (i.e., C1-smooth) function that may not be convex.
Derivative-free optimization means that there is no available information about Vf but only about
either f (noiseless case), or its approximation ¢ = f + & (noisy case). Over the years, problems of
this type have drawn strong attention in optimization theory and applications; see, e.g., [1-5] with the
references therein. Among various approaches to DFO, we concentrate below on optimization
algorithms involving finite-difference approximations, which are less investigated while showing to
be very promising from both viewpoints of optimization theory and applications; see [4], [5] among
other recent publications.

The noiseless case is more direct to handle by finite-difference approximations since a fixed
mesh interval can be used in discretization. However, known results obtained in this way for DFO
have not yet achieved desired convergence properties as for standard gradient descent methods. One
of the reasons for this is that derivative-free methods based on finite-difference approximations may
not produce descent directions without careful adaptive modifications. Dealing with DFO models in
the presence of noise is much more complicated, and the usage of finite-difference approximations
may significantly increase computational costs.

To address these issues in both noiseless and noisy cases, we first consider objective functions

f of class C’Ll'l, i.e., suchthat V£ is globally Lipschitz continuous on R™ with constant L. The proposed
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method is labeled as a derivative-free method with constant stepsize (DFC). In the noiseless case, the
proposed DFC exhibits global convergence with constructive convergence rates under natural
conditions including Polyak-£ojasiewicz-Kurdyka (PLK) properties; see [6] for more details. In the
noisy case, DFC provides finite convergence to an explicitly defined near-stationary point by
estimating the number of iterates needed to reach such a point. In contrast to known methods, a crucial
feature of DFC is a simultaneous adjustment, at each iteration, of the Lipschitz constant of the
objective function with the stepsize of the finite-difference approximation.

The class of ¢! functions (i.e., those with locally Lipschitzian gradients) is rather new in the
DFO literature; see [5] for detailed discussions. This framework allows us to efficiently investigate
not only global but also local convergence and convergence rates under the corresponding PLK
conditions. The most difficult case of large noise in DFO problems with 1! objectives is now
handled by using a dynamic step line search, where an approximate Lipschitz constant is used to
determine both the stepsize and the finite-difference interval. The conducted numerical experiments
for various problems arising in machine learning, statistics, artificial intelligence, etc. demonstrate
high efficiency of the proposed algorithms to solve practical models.

In what follows, we consider separately DFO algorithms and convergence results for classes of

¢* and ¢! objective functions in both noiseless and noisy cases.
2. Derivative-Free methods for €}* objectives

Given a C'-smooth function f:R™ - R, we say that a mapping G: R™ X (0,) —» R" is a
global approximation of V£ if there exist a constant C > 0 such that
1G(x,8) = Vf(x)|| <C§ forany (x,6) € R™ X (0, ).
G is a local approximation of Vf if for any bounded set (0 ¢ R™ and any A > 0, there exists C > 0
with
IG(x,8) = Vf(x)Il < C§ forany (x,6) € Q x (0,A].

For f € "', design the following derivative-free method with constant stepsize (DFC) in the
noiseless case.

Algorithm DFC-noiseless

Step 1. Choose a global approximation G of Vf. Select an initial point x* € R™, an initial sampling

radius §; > 0, aconstant C; > 0, a reduction factor 6 € (0,1), and scaling factorsu > 2,7 > 1,k >

0.Setk:=1.

Step 2. Find g* and the smallest nonnegative integer i, such that g* = G(x*, 8%6,) and | g*| >

UCi 0% 68,. Then set 8p4q : = 06y

Step 3. If f (xk — Cigk) < f(xk) = U2 gk1? then xk+li=xK — X gk and Cppy =G
k 2Cku Ck

Otherwise, set x**1: = x* and C,; : = nCy.

Recall that the PLK condition holds for a differentiable function f: R™ — R at x if there are
n > 0, a neighborhood U of x, and a nondecreasing function : (0,77) — (0, o) for which 1/ is
integrable over (0,7n) and

IVl = $(f (x) — f(%)) when x € U with f(¥) < f(x) < f(%) + 7.
The exponential PLK condition holds if y(t) = Mt? with some M > 0 and q € [0,1).

Theorem 1. Let {x*} be the sequence generated by Algorithm DFC-noiseless with V£ (x*) = 0 for
all k € N. We have that either f(x*) - —o as k - oo, or:
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(i) The gradient sequence {Vf (x*)} converges to 0 as k — co.
(ii) If f satisfies the PLK condition at some accumulation point x of {x*}, then x* - x as k -
(0 0]

(iii) If the exponential PLK conditions holds with some M > 0 and q € [1/2,1), then we have
the following convergence rates for {x*}:
o For g = 1/2, the sequences {x*}, {Vf(x*)}, and {f (x*)} converge linearly to x, 0, and f (i),
respectively.
e For g € (1/2,1), the convergence rates are

_1-a
Ixk — 2l =0 (k zq—1>,
_1-a _2-2q
IVf Gl = 0 (k7271), (k) - () = 0 (k2a-1).
Consider now the noisy case ¢ = f + £ with a bounded noise function |¢(x)| < & (which is

not assumed to be known) on R™ and construct, by using the basic vectors e;in R", the gradient
approximation

G(x,6):= %Z(qb(x + de;) — p(x))e; for (x,6) € R™ x (0, 0).

Algorithm DFC-noise

Step 1. Select some x* € R",§; >0, L; >0, 8 € (0,1),andn > 1. '

Step 2. Find g* and the smallest nonnegative integer i), satisfying g* = G(x*,8%5,) and | g*| >

2L, \/nB* 8, and then set 8,4, : = 85y,

Step 3. If ¢ (xk — ig") < p(xk) — ——lig*|l”, then set x**1:=xk — L gk and Ly,,:= L.
Li 24Ly Ly

Otherwise, set x**1 : = x* and Ly, : = nLy.

Theorem 2. Let the sequence {x*} be generated by Algorithm DFC-noise with §; > hﬁ and L; <

nL. Then the number N of iterations that Algorithm DFC-noise takes until [[Vf (x™)|| < 16,/Lné; is

bounded by
fGh — 7 +2¢ L
N<N,:=1 1 (—)J,
opt P =1 F [ ME, * l %6 \L,
2
where M : = - (i’;ﬁl)z.The total number N g, of function evaluations needed to achieve this goal is
1
bounded by

2\/5_f>|
Ngg < (n+2)Nyy, +nflo :
fial < ( IN ot \ g9<61\/z
I11. Derivative-Free methods with €11 objectives

Consider first the noiseless case and design the following derivative-free method with backtracking
stepsize (DFB).

Algorithm DFB-noiseless

Step 7. Choose a local approximation G of Vf and select an initial point x! € R™ and initial radius
6, > 0, a constant C; > 0, factors 6 € (0,1), u > 2, n > 1, line search constants g € (0,1/2),y €
(0,1), T> 0, and an initial bound t" € (0, 7). Choose a sequence of errors {v,} c [0, ) with
vpl0ask - oandsetk:=1.

Step 1. Select g* and the smallest nonnegative integer i, satisfying g* =

G(x*, min{0%5,,v,}) and llg¥ll > uC,8%5, and then set 5y, : = 8%,
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Step 2. Set stepsize t,, : = 7 and then take t : = yt, while f(x* — t,g%) > F(x¥) — Btellg]l” and
te > t}r{nm'

Step 3. If ¢, =t set 7, :=ty, Cpyq:=Cp and tPi0:=¢Mn Otherwise, set 7, :=0, Cyyq
:=nCy and tIl : = y¢nin,

Step 4. Set x**1 : = x* — 1, g*. Increase k by 1 and go back to Step 1.

Theorem 3. Let {x*} be generated by Algorithm DFB-noiseless with V£ (x*) # 0 forall k € N. Then
either f(x*) - —oo as k — oo, or we have:

(i) Every accumulation point of {x*} is a stationary point of f.

(i) If {x*} is bounded, then the collection of accumulation points of {x*} is nonempty, compact,
and connected in R™.

(i) If {x*} has an isolated accumulation point &, then this sequence converges to x as k — co.
Imposing the PLK conditions on f as in Theorem 1 allows us to establish global convergence and
convergence rates for Algorithm DFB-noiseless that are similar to Algorithm DFC-noiseless in
Theorem 1.

Next we continue the study of problem (P) with the objective function f: R™ - R of class 11,
where only a noisy approximation ¢ (x) = f(x) + £(x) of f is available. Using the forward finite
difference G (x, &) as in Section I1, we design the following derivative-free method with dynamic step
line search (DFD), whose crucial property is a dynamic step line search to construct the stepsize
together with the finite-difference interval.

Algorithm DFD-noise
Step 1 (initialization). Select an initial point x € R®,n > 1,and L, > 0. Set k: = 1.

Step 2. Find an integer number i, with the smallest absolute value such that for g% : = § (x", 7:5{ >
k

and 7, = nl% we have the estimate ¢ (x* — 7,g%) < p(x*) — %" lg®lI.
k .

Step 3. Set x**1 : = x* — 1, g% and Ly, : = n'kLy,.

We say that Step 1 of Algorithm DFD-noise is successful if the integer number i, can be found. The

next theorem provides a constructive condition for the successful step and allows us to estimate a

number of iterations needed to reach an almost-stationary point.

Theorem4. Let ¢, be a constant of the Lipschitz continuity of Vf on

B (xk, max {% IV (™, ?}) at the k ™ iteration of Algorithm DFD-noise. Then the condition
k k

IVF (I =8 /f’knnff

ensures that Step 1 of Algorithm DFD-noise is successful. Suppose in addition that there is L > 0
such that V£ is Lipschitz continuous with constant L on Uj_, B <xk, max {% IVF(x)II, %}) If

in this case inf,enf(x*) > —oo and for some K € N we have Ly € [L,nL), then the following hold:
(i) There exists N € N for which

IVF(x™)| < 8 /Lnngf.

(i) If furthermore f admits a global minimizer with the minimum value f < f(x¥) and f
satisfies the exponential PLK condition with some ¢ > 0 and g = 1/2, then the number N ensuring
(1) is upper estimated by
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N < max{l +K,1+K +log,_3u <;jg—:iff>}

167L

A large number of conducted numerical experiments confirm the efficiency of the proposed
algorithms and their advantages in applications to practical models.

3. Conclusion

This presentation describes several efficient algorithms to solve problems of smooth nonconvex

derivative-free optimization with global and local Lipschitzian gradients of the objective functions.
The proposed algorithms are separately designed in both noiseless and noisy cases for the minimizing
functions.
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