
Informatics and Control Problems 45 Issue 2 (2025)

journal homepage: www.icp.az

29

A function generating pseudorandom numbers with a uniform distribution for

creating cryptographic keys

Elkhan Sabziev, Adalat Pashayev, Emin Babayev*

Institute of Control Systems, Baku, Azerbaijan

A R T I C L E I N F O A B S T R A C T

Article history:

Received 12.03.2025

Received in revised form 29.03.2025

Accepted 07.04.2025

Available online 26.12.2025

The security of cryptographic keys depends on the distribution and

unpredictability of the generated random numbers. Therefore, it is

required that the generated pseudorandom number sequence has a

distribution close to a discrete uniform distribution. In this study, an

algorithm for generating pseudorandom number sequences with a

discrete uniform distribution is proposed.
Keywords:

Pseudorandom number generators

Perfect secrecy

Discrete uniform distribution

Generation of cryptographic keys

1. Introduction

Systems that perform data transformations using keys, encryption and decryption algorithms to

ensure data confidentiality are called cryptographic systems [1]. According to Kerckhoffs’ principle,

the security of a cryptographic system should be based on the level of the key secrecy, even if all

information about the system, including the encryption algorithm, is known. [2]. In cryptographic

systems, deriving a long key from a small password allows this key to be used securely for

cryptographic operations. The predictability and non-randomness of the generated keys can make the

system vulnerable to cryptanalytic attacks. Generating a random sequence of numbers is one of the

main elements used in key generation [1]. Pseudorandom number generators (PRNGs) are software

tools that generate random sequences of numbers using a specific mathematical algorithm and an

initial input parameter called a seed [1]. PRNGs are widely used in cryptographic systems for various

purposes. In this regard, the creation of random number sequence generators is important.

In systems with perfect secrecy, as defined by Claude Shannon in 1949, there is no information

leakage between the encrypted message and the original message [3]. This means that obtaining the

encrypted message does not provide any information about the original plaintext message. If we

denote the a priori probability of message 𝑀 by 𝑃(𝑀), and the a posteriori probability of message 𝑀,

if encrypted message 𝐸 is intercepted, by 𝑃𝐸(𝑀), then for perfect secrecy the equality 𝑃𝐸(𝑀) = 𝑃(𝑀)

must be satisfied. [3]. According to Shannon's theorem, a necessary and sufficient condition for

perfect secrecy is that, for all possible messages and encrypted messages, the probability of the

encrypted message being intercepted does not depend on the original message. In other words, given

*Corresponding author
E-mail addresses: elkhan.sabziev@gmail.com (E.N. Sabziev), adalat.pashayev@gmail.com (A.B. Pashayev),

eminbabayev2025@gmail.com (E.M. Babayev)

www.icp.az/2025/2-05.pdf https://doi.org/10.54381/icp.2025.2.05
2664-2085/ © 2025 Institute of Control Systems. All rights reserved

mailto:eminbabayev2025@gmail.com
http://www.icp.az/2025/2-05.pdf
https://doi.org/10.54381/icp.2025.2.05
https://portal.issn.org/resource/ISSN/2664-2085

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

30

any message 𝑀, the probability of the cryptogram 𝐸 being intercepted must be equal to the probability

of 𝐸 being intercepted from any cause, mathematically this condition is expressed as follows:

𝑃𝑀(𝐸) = 𝑃(𝐸) ,

where 𝑀 is the original message, 𝐸 is the encrypted message, 𝑃𝑀(𝐸) is conditional probability of

cryptogram 𝐸 if message 𝑀 is chosen, while 𝑃(𝐸) is the probability of probability of obtaining

cryptogram 𝐸 from any cause [3].

The correct choice of keys is one of the main issues for achieving perfect secrecy. For perfect

secrecy, the length of the key should be equal to the length of the message to be encrypted, and the

symbols of the key should be distributed uniformly [3]. The non-equal probability of symbols causes

some symbols to be used more often than others. In this case, such weaknesses in the keys make the

cryptographic system vulnerable to attacks. The random and equally probable selection of the

symbols of the keys prevents key predictability and increases the stability of the cryptographic

system.

The amount of uncertainty in a given key is measured by the entropy formula, proposed in

1948 by Claude Shannon [4]. Entropy is a measure of uncertainty and is calculated as follows:

𝐻 = − ∑ 𝑃𝑖 log 𝑃𝑖
𝑛
𝑖=1 ,

where 𝑃𝑖 is the probability of state 𝑖. For 𝑛 possible outcomes, 𝐻 takes a maximum value if the

probability of each outcome occurring is 𝑃𝑖 =
1

𝑛
. In this case, the entropy is equal to log 𝑛 [4].

2. Overview of the research on the topic

Pseudo-Random Number Generators (PRNGs) are deterministic algorithms that generate

sequences of numbers that appear random in a computer environment [1]. In fact, given that

computers are deterministic devices, it is impossible to say that the random numbers generated in this

way are completely random. Hence the term "pseudo" is used. When started with the same seed value

as an input parameter, PRNGs execute the same steps of the algorithm, and thus the sequence of

random numbers produced by the generator is always the same. This property is used in the generation

of cryptographic keys.

In cryptographic applications, TRNGs (True Random Number Generators) and CSPRNGs

(Cryptographically Secure Pseudorandom Number Generators) based on complex cryptographic

algorithms are used to generate keys. TRNGs use non-deterministic sources, such as natural physical

phenomena, to generate randomness. The fact that the results obtained are truly random allows

TRNGs to ensure a high level of security for cryptographic purposes [1]. However, TRNGs are slower

than CSPRNGs, meaning they take longer to generate numbers. For this reason, their use in some

cryptographic systems may be inefficient. For instance, in real-time data exchange or when large

amounts of data need to be encrypted quickly, CSPRNGs are more appropriate because they are

faster. At the same time, TRNGs are dependent on specific hardware modules (e.g., HSM – Hardware

Security Module, TPM – Trusted Platform Module, or specific TRNG chips), so their use is not

practical for every cryptographic system. For this reason, CSPRNGs are more widely used. The

results of such random number generators are expected to have a uniform distribution [1]. This

property is necessary to ensure randomness. Weak PRNGs can result in some numbers being

generated more often than others, which reduces randomness. CSPRNGs have more complex

algorithms than other PRNGs. Despite their deterministic nature, CSPRNGs should be difficult to

predict. The Blum Blum Shub, Yarrow, ChaCha20, and Fortuna algorithms are examples of

CSPRNGs.

The Blum Blum Shub (BBS) algorithm is a PRNG proposed in 1986 by Lenore Blum, Manuel

Blum, and Michael Shub [5]. Let us look at Blum Blum Shub generator in more detail. The algorithm

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

31

of the 𝑥2mod 𝑁 generator performs the following steps

1. Parameter selection:

a) Two large, distinct prime numbers of equal length, 𝑝 and 𝑞, are selected. For both

primes, 𝑝 ≡ 3 𝑚𝑜𝑑 4 and 𝑞 ≡ 3 𝑚𝑜𝑑 4.

b) The parameter 𝑁 is calculated by the product of these prime numbers:

𝑁 = 𝑞 × 𝑝.

2. Selection of the seed value, which is the initial input parameter:

a) This value is denoted by 𝑠 and is used to create the element 𝑥0 in the first step of the

algorithm. 𝑥0 must be a prime number different from 0 and 1 and coprime with N.

That is, 𝑝 and 𝑞 must not be divisors of s. Using the seed value 𝑠, 𝑥0 is found as

follows:

𝑥0 = 𝑠2 𝑚𝑜𝑑 𝑁.

3. Random number generation:

a) The algorithm repeats the following process to generate each new random number:

𝑥𝑛+1 = 𝑥𝑛
2 𝑚𝑜𝑑 𝑁.

b) The random bits are obtained by subtracting some bits from the value 𝑥𝑛 obtained

at each step. In general, only the least significant bit (LSB) is selected and used. The

least significant bit (LSB) is the rightmost bit in the binary representation of a

number. [5]

3. Problem statement

It is required to find an algorithm that generates a sequence of pseudorandom numbers such

that the distribution of the elements of this sequence is close to a uniform distribution.

Let us assume that the set of possible values of a discrete random variable 𝑋 is a proper set 𝑆 =
{𝑥1, 𝑥2, … , 𝑥𝑛, … }. The function that determines the probability of 𝑋 being equal to a certain value of

𝑥 is called the probability mass function (PMF) and is determined as follows:

𝑝𝑋(𝑥) = 𝑃(𝑋 = 𝑥) ,

where 𝑥 ∈ 𝑆 [6]. Note that for all possible values of 𝑋, 𝑝𝑋(𝑥) ≥ 0, ∑ 𝑝𝑋(𝑥)𝑥∈𝑆 = 1 [7].

Definition 1 (Discrete uniform distribution). For a given set of finite numbers 𝐶 =
{𝑥1, 𝑥2, … , 𝑥𝑛}, a random variable 𝑋 that selects each element from this set with equal probability is

called a discrete uniform distribution:

𝑃(𝑋 = 𝑥𝑖) =
1

𝑛
 ,

where 𝑥𝑖 ∈ 𝐶 and 𝑛 = |𝐶| [6].

A discrete uniform distribution over a set of finite numbers is a distribution in which every

possible number is equally probable.

4. Proposed approach

To solve the problem, we consider the distribution of the values of the function 𝑓𝑛 =
sin(𝜆𝑛) , 𝑛 = 1,2, … , 𝑁 in the interval [−1,1]. Here, the parameter 𝜆 denotes the angle, in degrees.

The domain of the function 𝑓𝑛 is a set of all real numbers, 𝐷(𝑓𝑛) = 𝑅 = (−∞, +∞), where the set 𝐷

indicates the domain of the function 𝑓𝑛. The values that a function can take vary in the interval [−1,1]
and the set of values of the function is denoted by 𝐸, 𝐸(𝑓𝑛) = [−1,1]. To check the uniform

distribution of the function in the interval [−1,1], we will divide [−1,1] into m equal parts. We will

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

32

denote the resulting fragments by 𝑏𝑖 and see how many values of the function 𝑓𝑛 fall into each

fragment. The fragments 𝑏𝑖 are generally determined as follows:

𝑏𝑖 = [−1 + ∆ℎ × 𝑖, −1 + ∆ℎ × (𝑖 + 1)], (1)

where 𝑖 = 0,1, … , 𝑚 − 1, obviously, each fragment 𝑏𝑖 is determined within [−1,1]. ∆ℎ is the length

of fragments 𝑏𝑖, and ∆ℎ =
2

𝑚
 .

It can be seen from the result of the numerical experiments that when the values of the parameter

𝑛 of the function 𝑓𝑛 increase in discrete steps in the interval (0, +∞), the number of values of the

function is not distributed uniformly in [−1; 1]. The number of values of the function is smaller in

the middle of interval [−1; 1], and while it is distributed close to the uniform distribution, the number

of values of the function is larger at the edges of the interval (see Fig. 1).

Fig. 1. Result of the experiment for 𝜆 = 3.1, 𝑛 = 100000, and 𝑚 = 30.

In this study, two classes of functions serving the same purpose will be denoted by 𝑓𝑛
(1)

 and

𝑓𝑛
(2)

, respectively. Based on the above, we will modify the sine function as follows:

𝑓𝑛
(1) =

sin(𝜆𝑛)

𝛼
 , (2)

where 0 < 𝛼 < 1, 𝑛 = 1,2, … , 𝑁, obviously, 𝑓𝑛
(1) ∈ [

−1

𝛼
,

1

𝛼
]. Let us introduce the function in the

following form:

𝑓𝑛
(2) = {

𝑓𝑛
(1) if |𝑓𝑛

(1)| ≤ 1,

1 − 𝑓𝑛
(1) if 𝑓𝑛

(1) > 1,

−1 − 𝑓𝑛
(1) if 𝑓𝑛

(1) < −1.

 (3)

The elements of the random number sequence generated by the proposed function do not

coincide.

Theorem. If 𝜆 and 𝛼 are rational numbers, then the elements of the sequence 𝑓𝑛
(2)

 do not

coincide for different values of 𝑛.

Proof. Suppose that when 𝑚 ≠ 𝑛, 𝑓𝑛
(1) = 𝑓𝑚

(1)
, since 𝑓𝑛

(1) =
sin(𝜆𝑛)

𝛼
, 𝑓𝑚

(1) =
sin(𝜆𝑚)

𝛼
,

sin(𝜆𝑛) = sin(𝜆𝑚),

sin(𝜆𝑛) − sin(𝜆𝑚) = 0. (4)

Using the formula for converting the difference of trigonometric functions into a product [8],

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

33

we can write equation (4) as follows:

sin(𝛼) − sin(𝛽) = 2 sin (
𝛼−𝛽

2
) cos (

𝛼+𝛽

2
),

sin(𝜆𝑛) − sin(𝜆𝑚) = 2 sin (
𝜆𝑛−𝜆𝑚

2
) cos (

𝜆𝑛+𝜆𝑚

2
) = 0. (5)

If 𝜆 is a rational number, then the numbers
𝜆𝑛−𝜆𝑚

2
 and

𝜆𝑛+𝜆𝑚

2
 in equation (5) are also rational.

The sine and cosine functions do not take the value 0 for any rational value of the argument. Thus,

when 𝜆 is a rational number, the equality 〖𝑓𝑛
(1) = 𝑓𝑚

(1)
 is not satisfied for different values of 𝑚

and 𝑛, and the values of the functions 〖𝑓𝑛
(1), 𝑓𝑚

(1)
 do not coincide. Thus, since the values of the

function 𝑓𝑛
(1)

 do not repeat, the elements of the sequence 𝑓𝑛
(2)

 do not repeat either. The theorem is

proved.

Let us consider the problem of a uniform distribution of the sequence 𝑓𝑛
(2)

 in interval [−1; 1].

Similarly, let us consider how many elements of the sequence 𝑓𝑛
(2)

 fall into each fragment 𝑏𝑖. Note

that the elements of 𝑓𝑛
(2)

 that do not fall into interval [−1; 1] are discarded. In order to verify that the

sequence 𝑓𝑛
(2)

 generates random numbers close to a uniform distribution, appropriate software was

created and numerical experiments were conducted. The results of these experiments, along with their

analysis and relevant graphical representations, are presented separately in Section 6.

5. Information about the software created for the purpose of the experiment

The algorithm used in the software generates a pseudo-random number sequence using

functions (2) and (3) depending on the parameters entered by the user. It is checked whether the

values of the sequence 𝑓𝑛
(2)

 have a uniform distribution in interval [−1,1]. Based on the input

parameters, [−1,1] is divided into equal-length sections and the number of values of the sequence

𝑓𝑛
(2)

 falling in each section is viewed. The result is displayed in the form of a graph. The software is

written in the Java programming language. The algorithm consists of the following steps:

1. Obtaining initial input parameters: The input parameters of the algorithm are the values

of 𝛼, 𝜆 and 𝑁, which are the parameters of the function (2), and the value of 𝑚, which indicates the

number of parts into which interval [−1,1] will be divided, entered by the user. These values

constitute the main parameters of the algorithm and are assigned to the variables shown below. Main

variables used in the software:

 𝜶𝒍𝒇𝒂, double-type variable, takes a value between 0 and 1.

 𝒍𝒂𝒎𝒃𝒅𝒂, double-type variable, used to assign the angle, which is a parameter of the sine

function, given in degrees.
 𝑵, int-type variable, the value of the variable indicates how many times the calculations

will be repeated.
 𝒎, int-type variable, the value of the variable indicates the number of subintervals into

which interval [−1,1] will be divided.
2. Calculating the length of subintervals: The algorithm divides interval [−1,1] into 𝑚 equal

sections. To calculate the length of the sections, double-type variable 𝒅𝒆𝒍𝒕𝒂𝑯 is introduced and the

length of the sections is calculated as 𝑑𝑒𝑙𝑡𝑎𝐻 = 2/𝑚.

3. Determining the 𝒄𝒐𝒖𝒏𝒕 array: An int-type array 𝑐𝑜𝑢𝑛𝑡 with 𝑚 elements is created and

each element of the array is initially set to zero. The elements of this array will store the number of

values of 𝑓𝑛
(2)

 that fall into each of the intervals 𝑏𝑖, 𝑖 = 0,1,2, … , 𝑚 − 1, as defined by (1).

4. Main cycle (repeats 𝑵 times, 𝒏 = 𝟏, 𝟐, 𝟑, … , 𝑵): The algorithm calculates the values of the

sequence 𝑓𝑛
(2)

 in each iteration of the 𝑁-times running cycle based on the initial input parameters

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

34

entered by the user, and increments the values of the elements of the 𝑐𝑜𝑢𝑛𝑡 array based on the interval

in which those values fall. The following operations are performed in each iteration:

 𝒔𝒊𝒏𝒖𝒔𝑽𝒂𝒍𝒖𝒆 double-type variable is introduced, and the value of sin(𝜆𝑛) function is

calculated and assigned to this variable.

 𝒇𝒏𝟏𝑽𝒂𝒍𝒖𝒆 double-type variable is introduced, and the value of the sine function is

divided by the value of the 𝛼𝑙𝑓𝑎 variable and assigned to this variable.

 Determining the values of the sequence 𝒇𝒏
(𝟐)

 i: 𝒇𝒏𝟐𝑽𝒂𝒍𝒖𝒆 double-type variable is

introduced. Using the value of the variable 𝑓𝑛1𝑉𝑎𝑙𝑢𝑒, the value of the variable

𝑓𝑛2𝑉𝑎𝑙𝑢𝑒 is determined within the following conditions:

 If |𝑓𝑛1𝑉𝑎𝑙𝑢𝑒| ≤ 1:

𝑓𝑛2𝑉𝑎𝑙𝑢𝑒 = 𝑓𝑛1𝑉𝑎𝑙𝑢𝑒

 If 𝑓𝑛1𝑉𝑎𝑙𝑢𝑒 > 1:

𝑓𝑛2𝑉𝑎𝑙𝑢𝑒 = 1 − 𝑓𝑛1𝑉𝑎𝑙𝑢𝑒

 If 𝑓𝑛1𝑉𝑎𝑙𝑢𝑒 < −1:

𝑓𝑛2𝑉𝑎𝑙𝑢𝑒 = −1 − 𝑓𝑛1𝑉𝑎𝑙𝑢𝑒

 Checking into which interval the values of the sequence 𝒇𝒏
(𝟐)

 fall: in this step, the

values of the sequence 𝑓𝑛
(2)

 that do not fall within the [−1,1] segment are ignored. If the

value of the variable 𝑓𝑛2𝑉𝑎𝑙𝑢𝑒 belongs to the interval [−1,1], the following operations

are performed:

 Internal cycle (repeats 𝒎 times, 𝒊 = 𝟎, 𝟏, 𝟐, … , 𝒎 − 𝟏): the following operations are

performed in each iteration:

 𝒑 and 𝒒 double-type variables are introduced. The values of the variables 𝑝 and 𝑞

determine the boundaries of the fragment 𝑏𝑖 for each 𝑖 and are calculated as 𝑝 = −1 +
∆ℎ × 𝑖, 𝑞 = −1 + ∆ℎ × (𝑖 + 1).

 If 𝑝 ≤ 𝑓𝑛2𝑉𝑎𝑙𝑢𝑒 ≤ 𝑞, the corresponding element of the 𝑐𝑜𝑢𝑛𝑡 array is incremented by

1 and the cycle is stopped. The operation is repeated for the next value of 𝑓𝑛
(2)

.

5. Displaying the result: Using the 𝑐𝑜𝑢𝑛𝑡 array, the number of the values of 𝑓𝑛
(2)

 falling into

each 𝑏𝑖 fragment is printed in histogram form.

6. Results of the experiment

It is assumed that the values of the parameters 𝛼 and 𝜆 should be selected so that the distribution

of the sequence 𝑓𝑛
(2) is close to a uniform distribution. The experiment shows that for values of the

parameter 𝛼 close to zero (e.g., 𝛼 ≈ 0.15 ± 0.05), the sequences obtained are close to a uniform

distribution. For larger values of the parameter 𝛼, the values of the sequence obtained are not

uniformly distributed. For comparison, the results corresponding to the values 𝛼 = 0.2, 𝛼 = 0.3 and

𝛼 = 0.9 are shown in Fig. 2, 3 and 4.

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

35

Fig. 2. Result of the experiment for 𝛼 = 0.2, 𝑛 = 100000, 𝜆 = 3.1 𝑎𝑛𝑑 𝑚 = 30.

Fig. 3. Result of the experiment for 𝛼 = 0.3, 𝑛 = 100000, 𝜆 = 3.1 𝑎𝑛𝑑 𝑚 = 30.

Fig. 4. Result of the experiment for 𝛼 = 0.9, 𝑛 = 100000, 𝜆 = 3.1 𝑎𝑛𝑑 𝑚 = 30.

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

36

7. Conclusion

The study examines the numerical sequence generated by the sine function with a certain

coefficient. It is shown through numerical experiments that the proposed function generates a

pseudorandom sequence of numbers with a uniform distribution. In cryptographic systems with

perfect secrecy proposed by Claude Shannon, deriving a long key with perfect secrecy from a small

password can be ensured by randomly selecting the symbols of the key with a uniform distribution.

Since these sequences have the properties of randomness and uniform distribution, they can be used

to generate cryptographic keys with perfect secrecy.

References

[1] W. Stallings, Cryptography and network security: Principles and practice, 7th ed., Pearson, (2017) 753 p.

[2] J. Katz, Y. Lindell, Introduction to modern cryptography, 3rd ed., CRC Press, Taylor & Francis Group, (2021)

626 p.

[3] C.E. Shannon, Communication theory of secrecy systems, The Bell System Technical Journal, October 1949. 28

No.4 p.656-715. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

[4] C.E. Shannon, A mathematical theory of communication, The Bell System Technical Journal, July 1948. 27

No.3 p.379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

[5] L. Blum, M. Blum, M. Shub, A simple unpredictable pseudo-random number generator, SIAM Journal on

Computing. 15 No.2 (1986) p.364-383. https://doi.org/10.1137/0215025

[6] J.K. Blitzstein, J. Hwang, Introduction to probability, 1st ed., CRC Press, Taylor & Francis Group, (2015) 570

p.

[7] S.M. Ross, A first course in probability, 10th ed., Pearson, (2018) 848 p.

[8] M.İ. Əfəndiyev, Triqonometrik tənliklər, M.İ. Əfəndiyev. N.B. Kərimov, N.İ. Mahmudov, Bakı, Təbib

Nəşriyyatı, (1992) 148 p. [In Azerbaijani: M.I. Efendiyev, Trigonometric Equations, M.I. Efendiyev. N.B.

Kerimov, N.I. Mahmudov, Baku, Tabib Publishing House].

https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1137/0215025

