Informatics and Control Problems 45 Issue 2 (2025)
journal homepage: www.icp.az

A function generating pseudorandom numbers with a uniform distribution for
creating cryptographic keys

Elkhan Sabziev, Adalat Pashayev, Emin Babayev"

Institute of Control Systems, Baku, Azerbaijan

ARTICLE INFO ABSTRACT

Article history: The security of cryptographic keys depends on the distribution and

Received 12.03.2025 unpredictability of the generated random numbers. Therefore, it is

Received in revised form 29.03.2025 required that the generated pseudorandom number sequence has a

Accepted 07.04.2025 distribution close to a discrete uniform distribution. In this study, an

Available online 26.12.2025 algorithm for generating pseudorandom number sequences with a
discrete uniform distribution is proposed.

Keywords:

Pseudorandom number generators

Perfect secrecy

Discrete uniform distribution
Generation of cryptographic keys

1. Introduction

Systems that perform data transformations using keys, encryption and decryption algorithms to
ensure data confidentiality are called cryptographic systems [1]. According to Kerckhoffs’ principle,
the security of a cryptographic system should be based on the level of the key secrecy, even if all
information about the system, including the encryption algorithm, is known. [2]. In cryptographic
systems, deriving a long key from a small password allows this key to be used securely for
cryptographic operations. The predictability and non-randomness of the generated keys can make the
system vulnerable to cryptanalytic attacks. Generating a random sequence of numbers is one of the
main elements used in key generation [1]. Pseudorandom number generators (PRNGs) are software
tools that generate random sequences of numbers using a specific mathematical algorithm and an
initial input parameter called a seed [1]. PRNGs are widely used in cryptographic systems for various
purposes. In this regard, the creation of random number sequence generators is important.

In systems with perfect secrecy, as defined by Claude Shannon in 1949, there is no information
leakage between the encrypted message and the original message [3]. This means that obtaining the
encrypted message does not provide any information about the original plaintext message. If we
denote the a priori probability of message M by P(M), and the a posteriori probability of message M,
if encrypted message E is intercepted, by Pz (M), then for perfect secrecy the equality Py (M) = P(M)
must be satisfied. [3]. According to Shannon's theorem, a necessary and sufficient condition for
perfect secrecy is that, for all possible messages and encrypted messages, the probability of the
encrypted message being intercepted does not depend on the original message. In other words, given

*Corresponding author
E-mail addresses: elkhan.sabziev@gmail.com (E.N. Sabziev), adalat.pashayev@gmail.com (A.B. Pashayev),
eminbabayev2025@gmail.com (E.M. Babayev)

www.icp.az/2025/2-05.pdf https://doi.org/10.54381/icp.2025.2.05
2664-2085/ © 2025 Institute of Control Systems. All rights reserved

29

mailto:eminbabayev2025@gmail.com
http://www.icp.az/2025/2-05.pdf
https://doi.org/10.54381/icp.2025.2.05
https://portal.issn.org/resource/ISSN/2664-2085

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

any message M, the probability of the cryptogram E being intercepted must be equal to the probability
of E being intercepted from any cause, mathematically this condition is expressed as follows:

Py(E) = P(E),

where M is the original message, E is the encrypted message, Py (E) is conditional probability of
cryptogram E if message M is chosen, while P(E) is the probability of probability of obtaining
cryptogram E from any cause [3].

The correct choice of keys is one of the main issues for achieving perfect secrecy. For perfect
secrecy, the length of the key should be equal to the length of the message to be encrypted, and the
symbols of the key should be distributed uniformly [3]. The non-equal probability of symbols causes
some symbols to be used more often than others. In this case, such weaknesses in the keys make the
cryptographic system vulnerable to attacks. The random and equally probable selection of the
symbols of the keys prevents key predictability and increases the stability of the cryptographic
system.

The amount of uncertainty in a given key is measured by the entropy formula, proposed in
1948 by Claude Shannon [4]. Entropy is a measure of uncertainty and is calculated as follows:

H=—Y,PlogP,
where P; is the probability of state i. For n possible outcomes, H takes a maximum value if the
probability of each outcome occurring is P; = % In this case, the entropy is equal to logn [4].

2. Overview of the research on the topic

Pseudo-Random Number Generators (PRNGs) are deterministic algorithms that generate
sequences of numbers that appear random in a computer environment [1]. In fact, given that
computers are deterministic devices, it is impossible to say that the random numbers generated in this
way are completely random. Hence the term "pseudo™ is used. When started with the same seed value
as an input parameter, PRNGs execute the same steps of the algorithm, and thus the sequence of
random numbers produced by the generator is always the same. This property is used in the generation
of cryptographic keys.

In cryptographic applications, TRNGs (True Random Number Generators) and CSPRNGs
(Cryptographically Secure Pseudorandom Number Generators) based on complex cryptographic
algorithms are used to generate keys. TRNGs use non-deterministic sources, such as natural physical
phenomena, to generate randomness. The fact that the results obtained are truly random allows
TRNGs to ensure a high level of security for cryptographic purposes [1]. However, TRNGs are slower
than CSPRNGs, meaning they take longer to generate numbers. For this reason, their use in some
cryptographic systems may be inefficient. For instance, in real-time data exchange or when large
amounts of data need to be encrypted quickly, CSPRNGs are more appropriate because they are
faster. At the same time, TRNGs are dependent on specific hardware modules (e.g., HSM — Hardware
Security Module, TPM — Trusted Platform Module, or specific TRNG chips), so their use is not
practical for every cryptographic system. For this reason, CSPRNGs are more widely used. The
results of such random number generators are expected to have a uniform distribution [1]. This
property is necessary to ensure randomness. Weak PRNGs can result in some numbers being
generated more often than others, which reduces randomness. CSPRNGs have more complex
algorithms than other PRNGs. Despite their deterministic nature, CSPRNGs should be difficult to
predict. The Blum Blum Shub, Yarrow, ChaCha20, and Fortuna algorithms are examples of
CSPRNGs.

The Blum Blum Shub (BBS) algorithm is a PRNG proposed in 1986 by Lenore Blum, Manuel
Blum, and Michael Shub [5]. Let us look at Blum Blum Shub generator in more detail. The algorithm

30

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

of the x2mod N generator performs the following steps
1. Parameter selection:
a) Two large, distinct prime numbers of equal length, p and q, are selected. For both
primes, p = 3 mod 4 and q = 3 mod 4.
b) The parameter N is calculated by the product of these prime numbers:

N =q Xp.
2. Selection of the seed value, which is the initial input parameter:
a) This value is denoted by s and is used to create the element x,, in the first step of the
algorithm. x, must be a prime number different from 0 and 1 and coprime with N.
That is, p and g must not be divisors of s. Using the seed value s, x, is found as
follows:

xo = s> mod N.
3. Random number generation:
a) The algorithm repeats the following process to generate each new random number:

Xpi1 = X2 mod N.

b) The random bits are obtained by subtracting some bits from the value x,, obtained
at each step. In general, only the least significant bit (LSB) is selected and used. The
least significant bit (LSB) is the rightmost bit in the binary representation of a
number. [5]

3. Problem statement

It is required to find an algorithm that generates a sequence of pseudorandom numbers such
that the distribution of the elements of this sequence is close to a uniform distribution.

Let us assume that the set of possible values of a discrete random variable X is a proper set S =
{x1, %5, ..., x,,, ... }. The function that determines the probability of X being equal to a certain value of
x is called the probability mass function (PMF) and is determined as follows:

px(x) = P(X =x),
where x € S [6]. Note that for all possible values of X, px(x) = 0, Y respx(x) = 1 [7].
Definition 1 (Discrete uniform distribution). For a given set of finite numbers C =
{x1, x5, ..., x,}, a random variable X that selects each element from this set with equal probability is
called a discrete uniform distribution:

PX=x)=1,
where x; € C and n = |C| [6].
A discrete uniform distribution over a set of finite numbers is a distribution in which every
possible number is equally probable.

4. Proposed approach

To solve the problem, we consider the distribution of the values of the function f, =
sin(An),n = 1,2,..., N in the interval [—1,1]. Here, the parameter A denotes the angle, in degrees.
The domain of the function f,, is a set of all real numbers, D(f;,) = R = (—o0, +0), where the set D
indicates the domain of the function f,,. The values that a function can take vary in the interval [—1,1]
and the set of values of the function is denoted by E, E(f;,) = [—1,1]. To check the uniform
distribution of the function in the interval [—1,1], we will divide [—1,1] into m equal parts. We will

31

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

denote the resulting fragments by b; and see how many values of the function f, fall into each
fragment. The fragments b; are generally determined as follows:

b =[-1+AhXi,—1+ Ah X (i +1)], 1)
where i = 0,1, ... ,m — 1, obviously, each fragment b; is determined within [—1,1]. Ah is the length

of fragments b;, and Ah = z

m
It can be seen from the result of the numerical experiments that when the values of the parameter
n of the function f,, increase in discrete steps in the interval (0, 4+o0), the number of values of the
function is not distributed uniformly in [—1; 1]. The number of values of the function is smaller in
the middle of interval [—1; 1], and while it is distributed close to the uniform distribution, the number
of values of the function is larger at the edges of the interval (see Fig. 1).

S | 9 S
N N

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

The number of values of f;

bi intervals for i=0,1,2,...,m-1
Fig. 1. Result of the experiment for A = 3.1,n = 100000, and m = 30.

In this study, two classes of functions serving the same purpose will be denoted by fn(l) and
fn(z), respectively. Based on the above, we will modify the sine function as follows:

sin(4An)
=22, ¥y
where 0 <a <1,n = 1,2,..,N, obviously, fn(l) € [%%] Let us introduce the function in the
following form:

fn(l) if |fn(1)| <1,
2 .
P ={1-£®0 i £®sq, 3)
—1-£,Y if 0 <-1.

The elements of the random number sequence generated by the proposed function do not
coincide.

Theorem. If A and «a are rational numbers, then the elements of the sequence fn(z) do not
coincide for different values of n.

Proof. Suppose that when m = n, £, = £,,®, since £, =
sin(An) = sin(Am),

sin(An) — sin(Am) = 0. 4)

Using the formula for converting the difference of trigonometric functions into a product [8],

sin(An) f (1) _ sin(dm)
a M T «

32

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

we can write equation (4) as follows:

sin(a) — sin(B) = 2 sin (“2;/3) cos (#),
sin(An) — sin(Am) = 2sin (An_zlm) cos (@) = 0. (5)
If A is a rational number, then the numbers 2= and 22™ iy equation (5) are also rational.

The sine and cosine functions do not take the value 0 for any rational value of the argument. Thus,
when A is a rational number, the equality Kfn(l) = fm(l) is not satisfied for different values of m
and n, and the values of the functions [f,", £, do not coincide. Thus, since the values of the
function fn(l) do not repeat, the elements of the sequence fn(z) do not repeat either. The theorem is
proved.

Let us consider the problem of a uniform distribution of the sequence fn(z) ininterval [—1; 1].
Similarly, let us consider how many elements of the sequence fn(z) fall into each fragment b;. Note
that the elements of fn(z) that do not fall into interval [—1; 1] are discarded. In order to verify that the
sequence fn(z) generates random numbers close to a uniform distribution, appropriate software was

created and numerical experiments were conducted. The results of these experiments, along with their
analysis and relevant graphical representations, are presented separately in Section 6.

5. Information about the software created for the purpose of the experiment

The algorithm used in the software generates a pseudo-random number sequence using
functions (2) and (3) depending on the parameters entered by the user. It is checked whether the
values of the sequence £, have a uniform distribution in interval [—1,1]. Based on the input
parameters, [—1,1] is divided into equal-length sections and the number of values of the sequence
£, falling in each section is viewed. The result is displayed in the form of a graph. The software is
written in the Java programming language. The algorithm consists of the following steps:

1. Obtaining initial input parameters: The input parameters of the algorithm are the values
of a, 1 and N, which are the parameters of the function (2), and the value of m, which indicates the
number of parts into which interval [—1,1] will be divided, entered by the user. These values
constitute the main parameters of the algorithm and are assigned to the variables shown below. Main
variables used in the software:

e alfa, double-type variable, takes a value between 0 and 1.

e lambda, double-type variable, used to assign the angle, which is a parameter of the sine
function, given in degrees.

e N, int-type variable, the value of the variable indicates how many times the calculations
will be repeated.

e m, int-type variable, the value of the variable indicates the number of subintervals into
which interval [—1,1] will be divided.

2. Calculating the length of subintervals: The algorithm divides interval [—1,1] into m equal
sections. To calculate the length of the sections, double-type variable deltaH is introduced and the
length of the sections is calculated as deltaH = 2/m.

3. Determining the count array: An int-type array count with m elements is created and
each element of the array is initially set to zero. The elements of this array will store the number of
values of fn(z) that fall into each of the intervals b;,i = 0,1,2, ..., m — 1, as defined by (1).

4. Main cycle (repeats N times, n = 1,2, 3, ..., N): The algorithm calculates the values of the

sequence fn(z) in each iteration of the N-times running cycle based on the initial input parameters

33

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

entered by the user, and increments the values of the elements of the count array based on the interval
in which those values fall. The following operations are performed in each iteration:

sinusValue double-type variable is introduced, and the value of sin(4An) function is
calculated and assigned to this variable.
fn1Value double-type variable is introduced, and the value of the sine function is
divided by the value of the alfa variable and assigned to this variable.
Determining the values of the sequence f,® i: fn2Value double-type variable is
introduced. Using the value of the variable fn1Value, the value of the variable
fn2Value is determined within the following conditions:
o If|fniValue| < 1:
fn2Value = fnlValue
o If fn1Value > 1:
fn2Value = 1 — fn1Value
o If fnlValue < —1:
fn2Value = —1 — fnlValue
Checking into which interval the values of the sequence fn(z) fall: in this step, the
values of the sequence fn(z) that do not fall within the [—1,1] segment are ignored. If the
value of the variable fn2Value belongs to the interval [—1,1], the following operations
are performed:
Internal cycle (repeats m times, i = 0,1, 2, ..., m — 1): the following operations are
performed in each iteration:
p and q double-type variables are introduced. The values of the variables p and q
determine the boundaries of the fragment b; for each i and are calculated as p = —1 +
AhXi,q=—-1+Ah X (i+1).
If p < fn2Value < q, the corresponding element of the count array is incremented by
1 and the cycle is stopped. The operation is repeated for the next value of fn(z).

5. Displaying the result: Using the count array, the number of the values of fn(z) falling into
each b; fragment is printed in histogram form.

6. Results of the experiment

It is assumed that the values of the parameters a and A should be selected so that the distribution

of the sequence f,® is close to a uniform distribution. The experiment shows that for values of the
parameter a close to zero (e.g., @ = 0.15 + 0.05), the sequences obtained are close to a uniform
distribution. For larger values of the parameter a, the values of the sequence obtained are not
uniformly distributed. For comparison, the results corresponding to the values a« = 0.2, « = 0.3 and
a = 0.9 are shown in Fig. 2, 3 and 4.

34

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

A XL 08 M QANNANND LD
Qa3 O QS RNINTABSINTR JU TN YA NS
R TP 0T 0D S0 PRIV GE T TR R0 D0 DD D 0 D X

The number of £.® values

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
b; intervals for 1=0,1,2,....m-1
Fig. 2. Result of the experiment for « = 0.2,n = 100000,4 = 3.1 and m = 30.

The number of £, values

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

b; intervals for 1=0,1,2.....m-1

Fig. 3. Result of the experiment for « = 0.3,n = 100000, 4 = 3.1 and m = 30.

The number of £,® values

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

b; intervals for i=0,1,2,....m-1
Fig. 4. Result of the experiment for « = 0.9,n = 100000,4 = 3.1 and m = 30.
35

Elkhan Sabziev et al. / Informatics and Control Problems 45 Issue 2 (2025)

7. Conclusion

The study examines the numerical sequence generated by the sine function with a certain

coefficient. It is shown through numerical experiments that the proposed function generates a
pseudorandom sequence of numbers with a uniform distribution. In cryptographic systems with
perfect secrecy proposed by Claude Shannon, deriving a long key with perfect secrecy from a small
password can be ensured by randomly selecting the symbols of the key with a uniform distribution.
Since these sequences have the properties of randomness and uniform distribution, they can be used
to generate cryptographic keys with perfect secrecy.

References

[1] W. Stallings, Cryptography and network security: Principles and practice, 7th ed., Pearson, (2017) 753 p.

[2] J. Katz, Y. Lindell, Introduction to modern cryptography, 3rd ed., CRC Press, Taylor & Francis Group, (2021)
626 p.

[3] C.E. Shannon, Communication theory of secrecy systems, The Bell System Technical Journal, October 1949. 28
No.4 p.656-715. https://doi.org/10.1002/j.1538-7305.1949.th00928.x

[4] C.E. Shannon, A mathematical theory of communication, The Bell System Technical Journal, July 1948. 27
No.3 p.379-423. https://doi.org/10.1002/j.1538-7305.1948.th01338.x

[5] L. Blum, M. Blum, M. Shub, A simple unpredictable pseudo-random number generator, SIAM Journal on
Computing. 15 No.2 (1986) p.364-383. https://doi.org/10.1137/0215025

[6] J.K. Blitzstein, J. Hwang, Introduction to probability, 1st ed., CRC Press, Taylor & Francis Group, (2015) 570
p.

[71 S.M. Ross, A first course in probability, 10th ed., Pearson, (2018) 848 p.

[8] M.. Ofondiyev, Trigonometrik tonliklor, M.1. Ofandiyev. N.B. Korimov, N.iI. Mahmudov, Baki, Tobib

Nosriyyati, (1992) 148 p. [In Azerbaijani: M.1. Efendiyev, Trigonometric Equations, M.1. Efendiyev. N.B.
Kerimov, N.I. Mahmudov, Baku, Tabib Publishing House].

36

https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1137/0215025

