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benchmark three approaches: tree-based learners, a similarity method
that matches new environments to known ones, and a simple clustering
baseline using standard top-k metrics (precision, recall, and mean
reciprocal rank). Results show that ensemble trees provide the most
reliable overall rankings, while the similarity method yields strong early-
rank retrieval; feasibility rules based on agro-ecological constraints
keep recommendations realistic without lowering quality. These
outcomes arise from non-linear patterns captured by ensembles and
closely related environments that favor similarity matching. Features
include a common top-k protocol, preprocessing, and transparent
guardrails. In practice, the framework supports advisory systems that
produce short lists for regions with measured profiles; new or shifting
regions require geography-aware validation and local calibration in real
deployments.
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1. Introduction

Selecting which crop to grow in which location is a first order lever for food security, farmer
income, and climate resilience. Soil degradation, water scarcity, climate variability, and rising input
costs all increase the potential risk to selecting crops that are poorly adapted. At the same time, the
immediacy of digital agriculture and ubiquitous environmental data (within the form of soil maps,
satellite products, weather reanalysis, etc.) can contribute information for location selection at the
parcel scale. Researching crop recommendation - the systematic matching of crops to environments
- addresses a deep-set and cherished need in agricultural sciences and society in general, and relates
to productivity, risk management, and sustainable land use.

Here, "crop recommendation™ refers to a top-k ranking of potential crops for a given location
that is conditioned by the environment and considers factors like topography, soil texture, pH,
temperature, precipitation regimes, and agronomic constraints. Data-driven recommendation
paradigms that learn associations from observations and agro-ecological compatibility and land
capability theories, which codify expert rules and biophysical limits, are two knowledge traditions
that intersect. Within the latter, collaborative-filtering models take advantage of environmental
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similarity, while content-based models make use of crops and site attributes. When crop selection is
framed as a ranked-list problem, information-retrieval metrics (such as Precision@k, Recall@k, and
MRR@K) are naturally invited to assess whether the right crops are listed first.

Agro-ecological zoning and suitability mapping were the focus of early work, which converted
expert knowledge into rule sets and multi-criteria overlays in GIS. To facilitate macro-level planning
and extension guidance, these studies established precise, comprehensible criteria for temperature,
rainfall, growing degree days, soil depth, salinity, and slope. However, hand-crafted thresholds and
region-specific rules can struggle with heterogeneity, non-linear interactions among factors, and rapid
environmental change precisely where learning from data can complement domain knowledge.

To predict crop suitability or suggest believable alternatives, more recent research uses machine
learning decision trees, random forests, gradient boosting, support vector machines, and, in certain
situations, deep neural models combined with remote sensing features. Additionally, hybrid content-
and-collaborative approaches or location similarity have been used to develop recommender systems.
Nevertheless, comparisons that are frequently like-for-like within a single paradigm, employ different
evaluation metrics, and are limited to a small number of crops or restricted geographic areas, hinder
transferability and practical adoption by policymakers and extension services.

A coherent, methodically evaluated framework that integrates state-of-the-art recommenders
and agro-ecological theory; explicitly frames crop selection as ranking and not just binary suitability;
compares classifiers and recommender models, and unsupervised baselines with common splits and
top-k metrics; and assesses generalization across environments using reproducible processes is still
desperately needed.

The development and assessment of scalable machine-learning frameworks that produce
environment-aware top-k crop rankings, the use of IR-style metrics to assess performance, and the
conversion of findings into practical, understandable guidance for farmers and extension agents
worldwide should be the main goals of crop recommendation research in the modern era.

Among the primary contributions to the field are: a principled formulation of the problem based
on data-driven learning that bases recommendations on agro-ecological compatibility; a standardized
evaluation protocol that uses Precision@k, Recall@k, and MRR@k for fair cross-model comparison;
empirical evidence that clarifies when ensemble trees, similarity-based recommenders, or clustering
baselines are most effective; and useful recommendations for feature engineering, uncertainty
communication, and deployment in decision-support tools. Research on creating crop
recommendation systems based on machine learning is therefore pertinent.

2. Literature review and problem statement

In [1], technical guidelines provide a comprehensible protocol for agro-ecological zoning
(AEZ), indicating how limiting factors of climate, soil, and topography can be brought together in a
way that delineates where certain crops are biophysically viable; essentially, this work encapsulates
expert knowledge into supervised rules for planning. However, the remaining issues are the inherent
sensitivity to fixed thresholds and limitations of transference between complex and heterogeneous
microenvironments. Regarding the lack of ranked alternatives for a site in relation to limitations
around their site constraints, this could be seen as part of the static, rule-based nature of AEZ: the
way appeals to common sense in the right context. A possible solution for these challenges would be
to model such rules against some kind of hierarchical data driven ranking models that take account
of local variability [1].

In [2], Land Capability Classification (LCC) groups soils into tiered classes which are used by
extension services; while it will certainly help with the mapping of land use constraints, it essentially
clouds the facet of which crop is the best among compatible options at the parcel-level since LCC
typically was designed for capability and not crop-specific rank within an LCC class [2].

38



Artughrul Gayibov et al. / Informatics and Control Problems 45 Issue 2 (2025)

The studies reported in [3] have open approaches to multi-criteria decision analysis (MCDA)
pipelines considering soil, topography, and climate, which report reproducible scoring but leave
unresolved components to an extent, such as subjective weighting or calibrating scores from across
regions - barriers to comparability across sites [3].

Integrative decision-support architecture shows capability and suitability layers feeding
operational tools, but in practice, they often do not take the step of learning from outcomes at scale,
which limits the potential for tailored personalization for farm-scale recommendations [4]. Paper [5]
presents crop selection models that use decision tree classification methods, attaining high accuracy
based on soil and climate feature datasets, highlighting the potential promise of supervised
classification for meaningful crop recommendation systems. This includes concerns around
robustness under distribution shift, and whether high "accuracy” is more validly seen as early rank
correct top-k lists given temporal leakage and small, homogeneous datasets [5]. In the paper [6]
compares different models for recommendation, finding that ensembles outperform simpler baseline
models, but across studies, inconsistent splits and metrics hamper fair comparisons, an objective
difficulty when public benchmarks are rare [6].

In [7], the authors apply time-series validity for ensemble methods and provide other realistic
and moderate performances to constrain the possibilities of conclusions we can make from varying
their evaluation design; however, they only focused on classification accuracy, not on ranked
recommendation metrics [7]. In [8], the authors provide useful timeliness in an ML-based
recommendation pipeline by including relevant feature sets; although generalization would be more
useful outside the study area, they did not adequately evaluate geography as a factor [8]. Paper [9],
ensembles plus AHP-GIS aid interpretability; unresolved is objective rank evaluation and portability
across sites, because hand-tuned weights and non-ranking scores can misalign with relevance at new
locations. In [10], the authors produce site-specific advisories using collaborative filtering, showing
how environmental proximity can provide crop options without numerous labels. Issues of cold start
for new environments remain unresolved, and there is a reliance on historical "co-occurrence”
patterns that may embed regional biases and limitations informed by data gaps and coverage [10]. In
[11], the paper discusses association-rule mining; it demonstrated that rules are transparent, but
unresolved are multi-factor non-linear interactions and cross-region robustness; the reason may be
due to discrete rules when factor variables exist on continuous agro-ecological gradients, and a high
curation cost; a way to overcome is feasibility-aware learning-to-rank; this approach was mentioned
in [11], but rules remain brittle; all of which points to investigating generalizable ranking models. In
[12], the paper reviews soil-physical measurements; it demonstrated that pH, texture, and organic
matter needed to be standardized; but unresolved is high costs and cross-lab harmonization restricting
larger, more diverse datasets; the reason may be budget restrictions and protocol incompatibilities; a
way to overcome is reference materials plus harmonized calibration; this approach was mentioned in
[12], but adoption is low; all of which points to investigating scalable, harmonized pipelines for robust
recommenders. In [13], the paper surveys richer soil profiling; it showed that larger feature vectors
helped; but unresolved is temporal staleness and their absence of uncertainty quantification causes
drift and unstable recommendations; the reason may be the high cost of repeated sampling and absent
probabilistic practice; a way to overcome is periodic refresh, drift monitoring, and calibrated
predictors; this approach was discussed in [13], however validation remains incomplete and
anecdotal; all of which points to investigating temporally robust, uncertainty-aware framework.

Generally, across these interrelated issues some themes of intractable issues persist: rule-based
definitions of suitability and capability framework rarely produce ranked lists of crops suited to
micro-sites; reported empirical results and splits from supervised ML studies do not allow for fair
comparison or masking of rank sensitivity; recommender-styled processes benefit from similarities
but lead to lack-of-evaluation and cold-start heterogeneity; and data quality, coverage, and
harmonization are all bottlenecks. These limitations persist due to objective difficulties, lack of
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standardized benchmarks and IR-style evaluation, high data acquisition costs, and regional
heterogeneity that undermines brittle rules or overfit models. All this suggests that it is advisable to
conduct a study on a unified, ranking-based crop recommendation framework that integrates agro-
ecological principles with data-driven learning and evaluates heterogeneous methods under common
top-k metrics.

3. The aim and objectives of the study

This study is grounded in two complementary traditions. First, agro-ecological compatibility
and land capability theories formalize biophysical limits, climate envelopes, soil constraints, and
terrain factors through interpretable rules that ensure agronomic plausibility. Second,
recommendation-system principles frame crop choice as a ranking problem, given an environmental
descriptor for a site, produce a top-k list of plausible crops. Within this paradigm, content-based
models use explicit soil-climate features, while collaborative filtering exploits similarity among
environments. To evaluate ranked lists rather than only binary suitability, information-retrieval (IR)
metrics Precision@k, Recall@k, and Mean Reciprocal Rank (MRR@K) are adopted. These concepts
jointly guide our methodology: encode expert agro-ecological priors to preserve interpretability and
safety, learn data-driven associations to capture complex interactions, and measure utility with top-k
metrics aligned to decision making.

Existing work leaves four persistent gaps: rule-based suitability maps and land-class schemes
seldom vyield site-specific ranked crop alternatives; supervised ML studies often use heterogeneous
datasets, splits, and accuracy-style scores, obscuring fair, rank-sensitive comparison; recommender
formulations mitigate sparsity via similarity but face cold-start environments and limited mechanisms
to inject agro-ecological constraints; and data harmonization issues (measurement drift, regional
heterogeneity) hinder generalization across geographies. Collectively, the field lacks a unified,
reproducible, ranking-based framework that integrates agro-ecological priors with modern
recommenders and evaluates diverse models under common top-k metrics. This is the general
unresolved problem motivating the present study.

To create and evaluate a single machine-learning-based crop recommendation system that
considers agro-ecological suitability and integrates data-driven learning, explicitly considers crop
selection as top-k ranking, and tests classifiers and recommender models using Precision@Kk,
Recall@k, and MRR@k with standardized data splits. Outcome decision-ready crop lists should be
interpretable for specific environments and could be embedded in advisory services to the farmer and
extension-based service providers with a view to improving crop selection decisions while also
addressing agronomic risk. In short, the work package aims to facilitate practical use to be deployed
as a decision-support tool, being transparent and comparable in assessing options of alternate crops
at the scale of a parcel.

To accomplish this aim, we will:

- identify target crops and pertinent labels appropriate for ranking; compile, clean, and
harmonize multi-regional soil-climate descriptors.

- define robust, location-aware train/validation/test splits and IR-style evaluation (P@k, R@K,
MRR@K); cast crop selection as a top-k recommendation task.

- apply environment-similarity collaborative filtering, content-based learners, and unsupervised
clustering baselines; use calibrated probabilities to translate classifiers into ranked outputs.

- guarantee agronomic validity, encoding hard and soft constraints (such as soil and climate
filters) as post-processing or constrained ranking.

- diagnose cold-start, feature drift, and transferability using cross-region evaluations, ablations,
and error analyses.
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- condense model outputs into recommendations that are easy for humans to understand and
that include guardrails and uncertainty cues for operational use.

4. Materials and Methods
4.1 Object of research and hypothesis

The object of research is the mapping from site-specific environmental descriptors to a ranked
list of agronomically plausible crops. The main research hypothesis is that integrating agro-ecological
compatibility constraints with data-driven recommenders yields more dependable early-rank
recommendations than either approach alone, when assessed with information-retrieval metrics
appropriate to top-k decision making. The study assumes that measured soil-climate descriptors are
representative at the parcel scale, that labels indicating the historically grown or expert-endorsed crop
are valid relevance signals, and that the same feature schema can be harmonized across regions.
Simplifications adopted in the work include treating the recommendation as a static ranking at
decision time (ignoring within-season dynamics), encoding categorical descriptors with label indices,
and converting probabilistic classifier outputs into ranked lists without post-hoc utility weighting.

4.2 Data

We employ the Croplntel dataset, comprising 10,000 observations with thirty-one variables
across twenty-nine countries and ninety-nine distinct crops, with no missing values after ingestion
[14]. Koppen climate zone, elevation, slope, aspect, and seasonal conditions are covered by thirty-
five features. pH, organic carbon, bulk density, CEC, water-holding capacity, depth, sand/silt/clay,
and drainage class are all components of the soil profile. Status of nutrients: available N, P, and K.
Overall land quality is summarized by land capability indices. Classification of crops rules and model-
driven generator generated data with controlled randomness that encoded crop requirements, water
balance, and nutrient sufficiency. Under ideal circumstances, records are clean and consistently
labeled to benchmark model performance.

4.3 Preprocessing and feature representation

The dataset was standardized for modeling through preprocessing. Stable mappings were used
to label categorical fields (Koppen zone, aspect, season, drainage, and crop); codes have no ordinal
meaning. There were no missing values, and if necessary, an imputation plan was in place (mode for
categorical, median for numeric). To support distance-based models, we z-scaled numerical features
using StandardScaler; tree models do not need scaling, but we maintained consistency. The regression
targets were kept in their original units. While keeping the top ten variables, we utilized SelectKBest:
f_classif for crop classification. Temperature, rainfall, pH, and N were the main variables of focus,
with rainfall (inversely). Consistent test/Cross Validation procedures provided comparable metric
calculations, and the data were split 80/20 (all stratified by crop). To prevent data leakage,
preprocessing transformations can only be fit on the training subset identified in the splitting protocol.

4.4 Modeling and recommendation formulations

We cast crop choice as a ranking problem and instantiate three complementary families of
methods. Content-based classifiers “Decision Tree, Random Forest, and Gradient Boosting” are
trained to predict the most suitable crop; class probability vectors are then sorted to form top-k
recommendation lists. A collaborative-filtering formulation constructs an environment-by-feature
representation and computes cosine similarity between sites; for a query environment, crops observed
in the most similar environments are aggregated into a ranked list by frequency or score. As an
unsupervised baseline, K-Means clustering is applied to the preprocessed feature space; each test
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instance inherits the crop frequency profile of its nearest cluster, which is then sorted into a top-Kk list.
All models share the same feature set and train/test partitions to ensure like-for-like comparison
across paradigms.

4.5 Evaluation protocol and metrics

Evaluation follows a held-out test protocol created by randomly partitioning instances into train
and test sets with a fixed seed to ensure replicability. Because decisions in practice are made from
short recommendation lists, we adopt Precision@k, Recall@k, F1@k, and Mean Reciprocal Rank
(MRR@K) as primary metrics with k € {5,10,15,20}. Classifiers are judged by whether the true crop
appears near the top of their probability-ranked lists; collaborative filtering and clustering are judged
by the rank position of the true crop within their list construction schemes. Metrics are computed per
instance and then macro-averaged over the test set. Hyperparameters are fixed across experiments to
privilege comparability over per-model tuning; sensitivity checks are conducted for k and, for
clustering, the number of clusters.

4.6 Implementation details

All experiments were completed using Python where the data was handled as described in this
section by Pandas and NumPy, preprocessing as handled by scikit-learn, tree-based classifiers, cosine
similarity and K-Means clustering also as handled by scikit-learn and figures were made using
Matplotlib. This section described exactly what | modeled, how | developed the features, what
recommendation strategies | compared, and how | evaluated performance. The experimental design
ensured that all the reported results are connected to a particular task, and all reportable results
connect to a decision about methodology as described in this section. This structure provides
transparency and reproducibility without giving anything away because it connects reportable results
and modeling choices, feature development, and evaluation methods directly.

5. Conclusion
5.1 Dataset readiness and coverage

The curated Croplntel corpus contains 10,000 samples, thirty-one standardized variables, and
zero missing values across twenty-nine countries and ninety-nine different crops. The spectral breadth
provides a long-tailed target distribution that is characteristic of agronomic options and justifies a
top-k evaluation versus single-label accuracy. The consolidated schema and completeness checks
(summarized in the accompanying table) verify that all features used downstream are consistently
typed and leakage-free. These results establish that the dataset is sufficiently diverse and clean to
support robust ranking experiments and cross-K analysis.

5.2 Problem formalization and metric behavior

Treating crop choice as a ranking task and adopting information-retrieval metrics produced
interpretable, decision-aligned summaries across k € {5,10,15,20}. Precision@k and Recall@k
increased monotonically with k for every method, and F1@k tracked Precision@k closely because
each test case has a single relevant crop. Mean Reciprocal Rank (MRR@k) captured early-rank
quality and proved most diagnostic at small k. Figure 1 (multi-panel bar charts by K) and Figure 2
(metric heatmaps by method x K) visualize these trends; annotations highlight the strongest bars in
each panel and the MRR@k cells that signal better “rank-1 or rank-2" retrieval.
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5.3 Cross-model performance comparison (multi-K)

Among content-based classifiers, ensembles outperformed simpler learners. Random Forest
achieved P@5=0.5015 and P@20=0.8740 with MRR@k=0.3023 — 0.3409 as K increased; Gradient
Boosted Trees yielded P@5=0.5095 and P@20=0.8570 with MRR@k=0.2882—0.3254. GBT
slightly led at small K (5-10), whereas RF overtook at larger K (15-20) and on MRR@k overall,
indicating better rank concentration near the top for RF. Structured KNN outperformed the single-
tree baseline but was still far behind ensembles (P@5=0.3360—P@20=0.4515;
MRR@k=0.1911—0.2007). The unsupervised K-Means recommender provided an unexpectedly
competitive baseline reflecting the informative cluster composition; P@5=0.4165 and P@20=0.8405
(MRR@k=0.2359—0.2781). The environment-similarity Collaborative Filtering (CF) formulation
returned P@k=1.0000 and MRR@k=1.0000 for all k, and Recall increased from 0.5317 (k=5) to
1.0000 (k=20). This shows that under the current similarity term and splits protocol, the correct crop
consistently appears at rank=1, and the relevant set has been completely recovered by k=20. Figure 2
reports the full multi-K metrics for each method; Figures 1-2 provide complementary visual
summaries.

5.4 Effect of agro-ecological constraints on recommendation validity

Applying agro-ecological compatibility checks as pre/post-filters ensured that
recommendations respected basic climate—soil feasibility without materially altering the ensemble
rankings at larger K. Qualitatively, cases where a classifier’s top-1 conflicted with a hard constraint
were demoted and replaced by the next feasible option, leaving Precision@?20 unchanged but slightly
improving the face-validity of top-5 lists. For CF, feasibility checks functioned as guardrails but did
not change measured metrics because the true crop already appeared at rank one. These results support
the premise that soft rules can be layered onto data-driven rankings to preserve agronomic plausibility
while retaining performance.

5.5 Robustness across K and implications for operational cut-offs

Because advisory workflows typically surface short lists, we examined sensitivity to K. For
ensembles, gains from k=5 to k=10 were substantial (e.g., RF P@5=0.5015—P@10=0.6990), while
increments beyond k=15 showed diminishing returns. MRR@Kk patterns—higher for RF than GBT
and markedly higher than KNN/CART—underscore that the strongest models not only include the
correct crop in the list but rank it near the top. For CF, perfect MRR@k and P@k suggest a strong
memorization effect under environmental similarity; this performance is desirable operationally but
should be re-validated under stricter geography-aware or farm-holdout splits in future work. Overall,
k € [10,15] emerges as a practical cut-off that balances list brevity and retrieval coverage for non-CF
models.

5.6 Decision-support readiness and interpretability artifacts

To translate rankings into actionable guidance, we produced per-site top-k lists accompanied
by model provenance and feasibility flags. For tree ensembles, feature importance profiles (available
in the repository artifacts) were inspected to confirm agronomic sensibility (e.g., soil reaction and
texture consistently among top features). The multi-K tables enable straightforward policy thresholds
(e.g., minimum P@10 for deployment), while Figures 1-2 provide an at-a-glance comparison that
stakeholders can interpret without technical detail. Together, these outputs constitute decision-ready
artifacts that can be embedded into advisory tools.

43



Artughrul Gayibov et al. / Informatics and Control Problems 45 Issue 2 (2025)

Method

Mezhad

Comparison of Technigues (Multi-K Metrics)

Scare

Score

K=15 K=10
104
0.8
0.6
0.4
0.2
K
0.0 - ecAlla
K=15 K=20 - FlEK
1.0 MRR
0.8
0.6 1
0.4
0.2
0.0-
& & 3 & .3 & & 2 N & .3 &
d;zb _(5\ < & < ‘}z")(\ dS* _{5\ @ & < \:@,a(\
w 3
Method Method
Fig. 1. Comparison of techniques across ke {5,10,15,20}
Heatmaps of Multi-k Metrics
Precision@K Heatmap 10 Recall@k Heatmap 1o
CART
0 04
CF- Laco 1.000 1.000 1000
n& 04
z
£
g
04 04
0z 02
0699
0o 04
K
F1@k Heatma MRR Heatma|
2 4 -1.0 d -10
CART
0.8 04
CF - Looo 1.000 1000 Laco
0710 g GBT o
<
g
2
£
=
04 K-Means 0.4
NN
[¥] 02
a.501 0.699 rF
. 0.y 04
5 15 =0 5 0 5 20

Fig. 2. Heatmaps per metric (Precision@k, Recall@k, F1@k, MRR@k)

44



Artughrul Gayibov et al. / Informatics and Control Problems 45 Issue 2 (2025)

Collectively, these results validate a unified, ranking-based framework for crop
recommendation: ensembles deliver strong, stable performance; environment-similarity CF yields
perfect early-rank retrieval under the present split; and feasibility filters safeguard agronomic
plausibility supporting the study’s aim of producing decision-ready, site-specific crop
recommendations.

6. Discussion

The unified, ranking-based evaluation shows three consistent patterns visible in Figures 1-2:
ensemble trees dominate simpler classifiers, an environment-similarity collaborative filter (CF)
achieves perfect early-rank retrieval under the current split, and an unsupervised K-Means baseline
remains competitive at larger K. These outcomes follow directly from the metric definitions
Precision@k, Recall@k, F1@k, and MRR@k which emphasize early placement of the true crop in
short lists rather than single-label accuracy, explaining why models that concentrate probability mass
on a few plausible crops score well. Methodological decisions that enforce a single train/test split
and shared preprocessing reduce confounding and help isolate algorithmic effects. The strong K-
Means baseline is consistent with clusters capturing broad agro-ecological regimes; its quantitative
footprint at k € {5,10,15,20}.

Relative to prior work, our ensemble results align with reports that tree ensembles excel for
crop suitability and recommendation, while single trees and KNN trail [5, 6, 7]. Unlike studies that
emphasize accuracy on narrow geographies, our use of IR-style ranking makes the evaluation
comparable across method families and directly decision-aligned. Hybrid AEZ/MCDA pipelines
improve interpretability but depend on hand-tuned weights and rarely yield ranked alternatives; our
framework complements these by learning non-linear interactions and outputting top-k lists [1, 9].
CF’s strength extends observations that similarity-based advisories can surface plausible crops even
with sparse labels [10], yet our results highlight where such methods can over-rely on near duplicates.
Mechanistically, ensemble advantages are expected: agro-ecological niches comprise thresholds and
interactions that tree ensembles capture well, matching the theoretical rationale articulated in classic
ensemble results.

The CF perfect P@k and MRR@K (Figure 2) is surprising. A plausible explanation consistent
with our own analysis text is that many test environments have close twins in training, allowing
nearest-neighbor voting to reproduce the true crop exactly, while cases lacking clear neighbors
depress recall at small k. This “memorization via similarity” effect is acknowledged and cautions that
geography-aware or farm-level holdouts should be evaluated next.

These findings address the unresolved problems by producing ranked alternatives rather than
binary suitability, enabling fair cross-paradigm comparison via a common top-k protocol (Figures 1—
2), and showing how soft agro-ecological guardrails can be layered without degrading retrieval
quality, thus connecting rule-based agronomy with data-driven ranking [1, 2].

Limitations include reliance on a single held-out split that is not explicitly geography-stratified,
a single-label relevance assumption that understates multi-crop viability, and minimal hyper-
parameter tuning aimed at comparability rather than per-model optimality. Shortcomings of this study
are the absence of latent-factor recommenders and deep models for a head-to-head ranking
comparison, limited uncertainty quantification for end users, and no external validation on
independently sourced regions.

In the future, development we should include geography-aware and farm-holdout splits,
augment latent-factor and hybrid recommenders with ensembles to develop a stronger ranking
baseline, and implement uncertainty and utility-aware post-processing to threshold top-k lists for
deployment. Expanding evaluation with standard benchmarks and multi-label relevance will boost
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reproducibility and relevance while keeping the focus firmly on crop recommendation rather than
other tenuously connected activities [5, 7, 8].

7. Conclusion

This study aimed scientifically to develop and validate a unified, ranking-based machine-
learning framework for crop recommendation that integrates agro-ecological compatibility with data-
driven learning and evaluates heterogeneous methods using IR metrics (Precision@k, Recall@Kk,
F1@k, MRR@K); and practically to deliver decision-ready, interpretable top-k crop lists for specific
environments. The main contributions are a principled problem formulation, a standardized multi-K
evaluation protocol, a cross-paradigm comparison of classifiers, similarity-based recommenders, and
clustering baselines, the layering of agro-ecological feasibility checks, guidance on operational K cut-
offs, and deployment-oriented artifacts.

1. The curated corpus (=10,000 instances; 31 variables; 29 countries; 99 crops; no missing values)
establishes a robust empirical basis for ranking studies. Its long-tailed target distribution and
geographic diversity directly address data limitations noted in prior work, enabling credible
top-k evaluation. The completeness and harmonization reduce confounding and explain the
stability observed across methods.

2. Casting crop choice as ranking and judging with IR metrics yields interpretable, decision-
aligned behavior: Precision@k and Recall@k increase with k, while MRR@k is most sensitive
to early-rank correctness. Because each case has one relevant crop, F1@k largely tracks
Precision@Kk. This resolves evaluation heterogeneity in earlier studies by making cross-model
comparisons fair and directly tied to advisory use.

3. Ensembles outperform simpler learners, with Random Forest reaching P@20=0.8740
(MRR@k~0.34) and Gradient Boosting leading slightly at small K (e.g., P@5=0.5095). KNN
and CART trail, while K-Means is a competitive unsupervised baseline (P@20=0.8405). The
environment-similarity CF recommender achieves P@k=1.0000 and MRR@k=1.0000 for all
k, indicating rank-1 retrieval. Ensemble gains arise from capturing non-linear soil-climate
interactions; CF’s perfection suggests memorization via near-duplicate environments.

4. Incorporating agro-ecological feasibility as hard/soft filters preserves retrieval quality (e.g.,
P@20 unchanged for ensembles) while improving the plausibility of top five lists when a top
one violates constraints. This concretely bridges rule-based agronomy with learned rankings,
overcoming a key gap in earlier AEZ-style pipelines.

5. Robustness analysis shows large gains from k=5 to higher k and diminishing returns beyond
k=~15; for non-CF models, k=10-15 balances brevity and coverage. RF’s rise from
P@5=0.5015 toward P@20=0.8740 exemplifies this pattern. MRR@k consistently favors
ensembles over KNN/CART, confirming better early-rank concentration essential for advisory
settings.

6. Decision-support artifacts per-site top-k lists with provenance, feasibility flags, and ensemble
feature-importance profiles make outputs transparent and actionable. Policy thresholds (e.g.,
minimum P@10 for deployment) can now be set against standardized tables and figures,
supporting operational integration by extension services.

7. Limitations and future work. Current limits include a single (non-geography-stratified) split,
single-label relevance, minimal hyper-parameter tuning, and no head-to-head with latent-
factor/deep recommenders. Future research should adopt geography-aware/farm-level
holdouts, model multi-label relevance, quantify predictive uncertainty and utility, and broaden
baselines (e.g., matrix factorization, hybrid CF/CBF) within the same ranking protocol.
Together, these steps will strengthen generalization and further mature crop recommendation
into a reliable decision-support standard.
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