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The rising demand for sustainable agriculture calls for intelligent 

systems that recommend suitable crops. This study turns site-specific soil, 

climate, and terrain data into a ranked short list of crops for decision 

support. The problem is that crop choice is framed as a yes/no suitability 

task and evaluated with mixed criteria, hindering comparison and 

adoption. We propose a unified, ranking-based evaluation and 

benchmark three approaches: tree-based learners, a similarity method 

that matches new environments to known ones, and a simple clustering 

baseline using standard top-k metrics (precision, recall, and mean 

reciprocal rank). Results show that ensemble trees provide the most 

reliable overall rankings, while the similarity method yields strong early-

rank retrieval; feasibility rules based on agro-ecological constraints 

keep recommendations realistic without lowering quality. These 

outcomes arise from non-linear patterns captured by ensembles and 

closely related environments that favor similarity matching. Features 

include a common top-k protocol, preprocessing, and transparent 

guardrails. In practice, the framework supports advisory systems that 

produce short lists for regions with measured profiles; new or shifting 

regions require geography-aware validation and local calibration in real 

deployments. 
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1. Introduction 

 

Selecting which crop to grow in which location is a first order lever for food security, farmer 

income, and climate resilience. Soil degradation, water scarcity, climate variability, and rising input 

costs all increase the potential risk to selecting crops that are poorly adapted. At the same time, the 

immediacy of digital agriculture and ubiquitous environmental data (within the form of soil maps, 

satellite products, weather reanalysis, etc.) can contribute information for location selection at the 

parcel scale. Researching crop recommendation - the systematic matching of crops to environments 

- addresses a deep-set and cherished need in agricultural sciences and society in general, and relates 

to productivity, risk management, and sustainable land use. 

Here, "crop recommendation" refers to a top-k ranking of potential crops for a given location 

that is conditioned by the environment and considers factors like topography, soil texture, pH, 

temperature, precipitation regimes, and agronomic constraints. Data-driven recommendation 

paradigms that learn associations from observations and agro-ecological compatibility and land 

capability theories, which codify expert rules and biophysical limits, are two knowledge traditions 

that intersect. Within the latter, collaborative-filtering models take advantage of environmental 
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similarity, while content-based models make use of crops and site attributes. When crop selection is 

framed as a ranked-list problem, information-retrieval metrics (such as Precision@k, Recall@k, and 

MRR@k) are naturally invited to assess whether the right crops are listed first. 

Agro-ecological zoning and suitability mapping were the focus of early work, which converted 

expert knowledge into rule sets and multi-criteria overlays in GIS. To facilitate macro-level planning 

and extension guidance, these studies established precise, comprehensible criteria for temperature, 

rainfall, growing degree days, soil depth, salinity, and slope. However, hand-crafted thresholds and 

region-specific rules can struggle with heterogeneity, non-linear interactions among factors, and rapid 

environmental change precisely where learning from data can complement domain knowledge. 

To predict crop suitability or suggest believable alternatives, more recent research uses machine 

learning decision trees, random forests, gradient boosting, support vector machines, and, in certain 

situations, deep neural models combined with remote sensing features. Additionally, hybrid content-

and-collaborative approaches or location similarity have been used to develop recommender systems. 

Nevertheless, comparisons that are frequently like-for-like within a single paradigm, employ different 

evaluation metrics, and are limited to a small number of crops or restricted geographic areas, hinder 

transferability and practical adoption by policymakers and extension services. 

A coherent, methodically evaluated framework that integrates state-of-the-art recommenders 

and agro-ecological theory; explicitly frames crop selection as ranking and not just binary suitability; 

compares classifiers and recommender models, and unsupervised baselines with common splits and 

top-k metrics; and assesses generalization across environments using reproducible processes is still 

desperately needed. 

The development and assessment of scalable machine-learning frameworks that produce 

environment-aware top-k crop rankings, the use of IR-style metrics to assess performance, and the 

conversion of findings into practical, understandable guidance for farmers and extension agents 

worldwide should be the main goals of crop recommendation research in the modern era. 

Among the primary contributions to the field are: a principled formulation of the problem based 

on data-driven learning that bases recommendations on agro-ecological compatibility; a standardized 

evaluation protocol that uses Precision@k, Recall@k, and MRR@k for fair cross-model comparison; 

empirical evidence that clarifies when ensemble trees, similarity-based recommenders, or clustering 

baselines are most effective; and useful recommendations for feature engineering, uncertainty 

communication, and deployment in decision-support tools. Research on creating crop 

recommendation systems based on machine learning is therefore pertinent. 

 

2. Literature review and problem statement 

 

In [1], technical guidelines provide a comprehensible protocol for agro-ecological zoning 

(AEZ), indicating how limiting factors of climate, soil, and topography can be brought together in a 

way that delineates where certain crops are biophysically viable; essentially, this work encapsulates 

expert knowledge into supervised rules for planning. However, the remaining issues are the inherent 

sensitivity to fixed thresholds and limitations of transference between complex and heterogeneous 

microenvironments. Regarding the lack of ranked alternatives for a site in relation to limitations 

around their site constraints, this could be seen as part of the static, rule-based nature of AEZ: the 

way appeals to common sense in the right context. A possible solution for these challenges would be 

to model such rules against some kind of hierarchical data driven ranking models that take account 

of local variability [1]. 

In [2], Land Capability Classification (LCC) groups soils into tiered classes which are used by 

extension services; while it will certainly help with the mapping of land use constraints, it essentially 

clouds the facet of which crop is the best among compatible options at the parcel-level since LCC 

typically was designed for capability and not crop-specific rank within an LCC class [2].  
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The studies reported in [3] have open approaches to multi-criteria decision analysis (MCDA) 

pipelines considering soil, topography, and climate, which report reproducible scoring but leave 

unresolved components to an extent, such as subjective weighting or calibrating scores from across 

regions - barriers to comparability across sites [3].  

Integrative decision-support architecture shows capability and suitability layers feeding 

operational tools, but in practice, they often do not take the step of learning from outcomes at scale, 

which limits the potential for tailored personalization for farm-scale recommendations [4]. Paper [5] 

presents crop selection models that use decision tree classification methods, attaining high accuracy 

based on soil and climate feature datasets, highlighting the potential promise of supervised 

classification for meaningful crop recommendation systems. This includes concerns around 

robustness under distribution shift, and whether high "accuracy" is more validly seen as early rank 

correct top-k lists given temporal leakage and small, homogeneous datasets [5]. In the paper [6] 

compares different models for recommendation, finding that ensembles outperform simpler baseline 

models, but across studies, inconsistent splits and metrics hamper fair comparisons, an objective 

difficulty when public benchmarks are rare [6]. 

In [7], the authors apply time-series validity for ensemble methods and provide other realistic 

and moderate performances to constrain the possibilities of conclusions we can make from varying 

their evaluation design; however, they only focused on classification accuracy, not on ranked 

recommendation metrics [7]. In [8], the authors provide useful timeliness in an ML-based 

recommendation pipeline by including relevant feature sets; although generalization would be more 

useful outside the study area, they did not adequately evaluate geography as a factor [8]. Paper [9], 

ensembles plus AHP-GIS aid interpretability; unresolved is objective rank evaluation and portability 

across sites, because hand-tuned weights and non-ranking scores can misalign with relevance at new 

locations. In [10], the authors produce site-specific advisories using collaborative filtering, showing 

how environmental proximity can provide crop options without numerous labels. Issues of cold start 

for new environments remain unresolved, and there is a reliance on historical "co-occurrence" 

patterns that may embed regional biases and limitations informed by data gaps and coverage [10]. In 

[11], the paper discusses association-rule mining; it demonstrated that rules are transparent, but 

unresolved are multi-factor non-linear interactions and cross-region robustness; the reason may be 

due to discrete rules when factor variables exist on continuous agro-ecological gradients, and a high 

curation cost; a way to overcome is feasibility-aware learning-to-rank; this approach was mentioned 

in [11], but rules remain brittle; all of which points to investigating generalizable ranking models. In 

[12], the paper reviews soil-physical measurements; it demonstrated that pH, texture, and organic 

matter needed to be standardized; but unresolved is high costs and cross-lab harmonization restricting 

larger, more diverse datasets; the reason may be budget restrictions and protocol incompatibilities; a 

way to overcome is reference materials plus harmonized calibration; this approach was mentioned in 

[12], but adoption is low; all of which points to investigating scalable, harmonized pipelines for robust 

recommenders. In [13], the paper surveys richer soil profiling; it showed that larger feature vectors 

helped; but unresolved is temporal staleness and their absence of uncertainty quantification causes 

drift and unstable recommendations; the reason may be the high cost of repeated sampling and absent 

probabilistic practice; a way to overcome is periodic refresh, drift monitoring, and calibrated 

predictors; this approach was discussed in [13], however validation remains incomplete and 

anecdotal; all of which points to investigating temporally robust, uncertainty-aware framework. 

Generally, across these interrelated issues some themes of intractable issues persist: rule-based 

definitions of suitability and capability framework rarely produce ranked lists of crops suited to 

micro-sites; reported empirical results and splits from supervised ML studies do not allow for fair 

comparison or masking of rank sensitivity; recommender-styled processes benefit from similarities 

but lead to lack-of-evaluation and cold-start heterogeneity; and data quality, coverage, and 

harmonization are all bottlenecks. These limitations persist due to objective difficulties, lack of 
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standardized benchmarks and IR-style evaluation, high data acquisition costs, and regional 

heterogeneity that undermines brittle rules or overfit models. All this suggests that it is advisable to 

conduct a study on a unified, ranking-based crop recommendation framework that integrates agro-

ecological principles with data-driven learning and evaluates heterogeneous methods under common 

top-k metrics. 

 

3. The aim and objectives of the study 

 

This study is grounded in two complementary traditions. First, agro-ecological compatibility 

and land capability theories formalize biophysical limits, climate envelopes, soil constraints, and 

terrain factors through interpretable rules that ensure agronomic plausibility. Second, 

recommendation-system principles frame crop choice as a ranking problem, given an environmental 

descriptor for a site, produce a top-k list of plausible crops. Within this paradigm, content-based 

models use explicit soil-climate features, while collaborative filtering exploits similarity among 

environments. To evaluate ranked lists rather than only binary suitability, information-retrieval (IR) 

metrics Precision@k, Recall@k, and Mean Reciprocal Rank (MRR@k) are adopted. These concepts 

jointly guide our methodology: encode expert agro-ecological priors to preserve interpretability and 

safety, learn data-driven associations to capture complex interactions, and measure utility with top-k 

metrics aligned to decision making. 

Existing work leaves four persistent gaps: rule-based suitability maps and land-class schemes 

seldom yield site-specific ranked crop alternatives; supervised ML studies often use heterogeneous 

datasets, splits, and accuracy-style scores, obscuring fair, rank-sensitive comparison; recommender 

formulations mitigate sparsity via similarity but face cold-start environments and limited mechanisms 

to inject agro-ecological constraints; and data harmonization issues (measurement drift, regional 

heterogeneity) hinder generalization across geographies. Collectively, the field lacks a unified, 

reproducible, ranking-based framework that integrates agro-ecological priors with modern 

recommenders and evaluates diverse models under common top-k metrics. This is the general 

unresolved problem motivating the present study. 

To create and evaluate a single machine-learning-based crop recommendation system that 

considers agro-ecological suitability and integrates data-driven learning, explicitly considers crop 

selection as top-k ranking, and tests classifiers and recommender models using Precision@k, 

Recall@k, and MRR@k with standardized data splits. Outcome decision-ready crop lists should be 

interpretable for specific environments and could be embedded in advisory services to the farmer and 

extension-based service providers with a view to improving crop selection decisions while also 

addressing agronomic risk. In short, the work package aims to facilitate practical use to be deployed 

as a decision-support tool, being transparent and comparable in assessing options of alternate crops 

at the scale of a parcel. 

To accomplish this aim, we will: 

- identify target crops and pertinent labels appropriate for ranking; compile, clean, and 

harmonize multi-regional soil-climate descriptors. 

- define robust, location-aware train/validation/test splits and IR-style evaluation (P@k, R@k, 

MRR@k); cast crop selection as a top-k recommendation task. 

- apply environment-similarity collaborative filtering, content-based learners, and unsupervised 

clustering baselines; use calibrated probabilities to translate classifiers into ranked outputs. 

- guarantee agronomic validity, encoding hard and soft constraints (such as soil and climate 

filters) as post-processing or constrained ranking. 

- diagnose cold-start, feature drift, and transferability using cross-region evaluations, ablations, 

and error analyses. 
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- condense model outputs into recommendations that are easy for humans to understand and 

that include guardrails and uncertainty cues for operational use. 

 

4. Materials and Methods 
 

4.1 Object of research and hypothesis 
 

The object of research is the mapping from site-specific environmental descriptors to a ranked 

list of agronomically plausible crops. The main research hypothesis is that integrating agro-ecological 

compatibility constraints with data-driven recommenders yields more dependable early-rank 

recommendations than either approach alone, when assessed with information-retrieval metrics 

appropriate to top-k decision making. The study assumes that measured soil–climate descriptors are 

representative at the parcel scale, that labels indicating the historically grown or expert-endorsed crop 

are valid relevance signals, and that the same feature schema can be harmonized across regions. 

Simplifications adopted in the work include treating the recommendation as a static ranking at 

decision time (ignoring within-season dynamics), encoding categorical descriptors with label indices, 

and converting probabilistic classifier outputs into ranked lists without post-hoc utility weighting. 

 

4.2 Data 
 

We employ the CropIntel dataset, comprising 10,000 observations with thirty-one variables 

across twenty-nine countries and ninety-nine distinct crops, with no missing values after ingestion 

[14]. Köppen climate zone, elevation, slope, aspect, and seasonal conditions are covered by thirty-

five features. pH, organic carbon, bulk density, CEC, water-holding capacity, depth, sand/silt/clay, 

and drainage class are all components of the soil profile. Status of nutrients: available N, P, and K. 

Overall land quality is summarized by land capability indices. Classification of crops rules and model-

driven generator generated data with controlled randomness that encoded crop requirements, water 

balance, and nutrient sufficiency. Under ideal circumstances, records are clean and consistently 

labeled to benchmark model performance. 

 

4.3 Preprocessing and feature representation 
 

The dataset was standardized for modeling through preprocessing. Stable mappings were used 

to label categorical fields (Köppen zone, aspect, season, drainage, and crop); codes have no ordinal 

meaning. There were no missing values, and if necessary, an imputation plan was in place (mode for 

categorical, median for numeric). To support distance-based models, we z-scaled numerical features 

using StandardScaler; tree models do not need scaling, but we maintained consistency. The regression 

targets were kept in their original units. While keeping the top ten variables, we utilized SelectKBest: 

f_classif for crop classification. Temperature, rainfall, pH, and N were the main variables of focus, 

with rainfall (inversely). Consistent test/Cross Validation procedures provided comparable metric 

calculations, and the data were split 80/20 (all stratified by crop). To prevent data leakage, 

preprocessing transformations can only be fit on the training subset identified in the splitting protocol. 

 

4.4 Modeling and recommendation formulations 
 

We cast crop choice as a ranking problem and instantiate three complementary families of 

methods. Content-based classifiers “Decision Tree, Random Forest, and Gradient Boosting” are 

trained to predict the most suitable crop; class probability vectors are then sorted to form top-k 

recommendation lists. A collaborative-filtering formulation constructs an environment-by-feature 

representation and computes cosine similarity between sites; for a query environment, crops observed 

in the most similar environments are aggregated into a ranked list by frequency or score. As an 

unsupervised baseline, K-Means clustering is applied to the preprocessed feature space; each test 
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instance inherits the crop frequency profile of its nearest cluster, which is then sorted into a top-k list. 

All models share the same feature set and train/test partitions to ensure like-for-like comparison 

across paradigms. 

 

4.5 Evaluation protocol and metrics 
 

Evaluation follows a held-out test protocol created by randomly partitioning instances into train 

and test sets with a fixed seed to ensure replicability. Because decisions in practice are made from 

short recommendation lists, we adopt Precision@k, Recall@k, F1@k, and Mean Reciprocal Rank 

(MRR@k) as primary metrics with 𝑘 ∈ {5,10,15,20}. Classifiers are judged by whether the true crop 

appears near the top of their probability-ranked lists; collaborative filtering and clustering are judged 

by the rank position of the true crop within their list construction schemes. Metrics are computed per 

instance and then macro-averaged over the test set. Hyperparameters are fixed across experiments to 

privilege comparability over per-model tuning; sensitivity checks are conducted for 𝑘 and, for 

clustering, the number of clusters.  

 

4.6 Implementation details 
 

All experiments were completed using Python where the data was handled as described in this 

section by Pandas and NumPy, preprocessing as handled by scikit-learn, tree-based classifiers, cosine 

similarity and K-Means clustering also as handled by scikit-learn and figures were made using 

Matplotlib. This section described exactly what I modeled, how I developed the features, what 

recommendation strategies I compared, and how I evaluated performance. The experimental design 

ensured that all the reported results are connected to a particular task, and all reportable results 

connect to a decision about methodology as described in this section. This structure provides 

transparency and reproducibility without giving anything away because it connects reportable results 

and modeling choices, feature development, and evaluation methods directly. 

 

5. Conclusion 
 

5.1 Dataset readiness and coverage 
 

The curated CropIntel corpus contains 10,000 samples, thirty-one standardized variables, and 

zero missing values across twenty-nine countries and ninety-nine different crops. The spectral breadth 

provides a long-tailed target distribution that is characteristic of agronomic options and justifies a 

top-k evaluation versus single-label accuracy. The consolidated schema and completeness checks 

(summarized in the accompanying table) verify that all features used downstream are consistently 

typed and leakage-free. These results establish that the dataset is sufficiently diverse and clean to 

support robust ranking experiments and cross-K analysis. 

 

5.2 Problem formalization and metric behavior 
 

Treating crop choice as a ranking task and adopting information-retrieval metrics produced 

interpretable, decision-aligned summaries across 𝑘 ∈  {5,10,15,20}. Precision@k and Recall@k 

increased monotonically with k for every method, and F1@k tracked Precision@k closely because 

each test case has a single relevant crop. Mean Reciprocal Rank (MRR@k) captured early-rank 

quality and proved most diagnostic at small k. Figure 1 (multi-panel bar charts by K) and Figure 2 

(metric heatmaps by method × K) visualize these trends; annotations highlight the strongest bars in 

each panel and the MRR@k cells that signal better “rank-1 or rank-2” retrieval. 
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5.3 Cross-model performance comparison (multi-K) 
 

Among content-based classifiers, ensembles outperformed simpler learners. Random Forest 

achieved P@5=0.5015 and P@20=0.8740 with MRR@k=0.3023 → 0.3409 as K increased; Gradient 

Boosted Trees yielded P@5=0.5095 and P@20=0.8570 with MRR@k=0.2882→0.3254. GBT 

slightly led at small K (5–10), whereas RF overtook at larger K (15–20) and on MRR@k overall, 

indicating better rank concentration near the top for RF. Structured KNN outperformed the single-

tree baseline but was still far behind ensembles (P@5=0.3360→P@20=0.4515; 

MRR@k=0.1911→0.2007). The unsupervised K-Means recommender provided an unexpectedly 

competitive baseline reflecting the informative cluster composition; P@5=0.4165 and P@20=0.8405 

(MRR@k=0.2359→0.2781). The environment-similarity Collaborative Filtering (CF) formulation 

returned P@k=1.0000 and MRR@k=1.0000 for all k, and Recall increased from 0.5317 (k=5) to 

1.0000 (k=20). This shows that under the current similarity term and splits protocol, the correct crop 

consistently appears at rank=1, and the relevant set has been completely recovered by k=20. Figure 2 

reports the full multi-K metrics for each method; Figures 1–2 provide complementary visual 

summaries. 

 

5.4 Effect of agro-ecological constraints on recommendation validity 
 

Applying agro-ecological compatibility checks as pre/post-filters ensured that 

recommendations respected basic climate–soil feasibility without materially altering the ensemble 

rankings at larger K. Qualitatively, cases where a classifier’s top-1 conflicted with a hard constraint 

were demoted and replaced by the next feasible option, leaving Precision@20 unchanged but slightly 

improving the face-validity of top-5 lists. For CF, feasibility checks functioned as guardrails but did 

not change measured metrics because the true crop already appeared at rank one. These results support 

the premise that soft rules can be layered onto data-driven rankings to preserve agronomic plausibility 

while retaining performance. 

 

5.5 Robustness across K and implications for operational cut-offs 
 

Because advisory workflows typically surface short lists, we examined sensitivity to K. For 

ensembles, gains from k=5 to k=10 were substantial (e.g., RF P@5=0.5015→P@10=0.6990), while 

increments beyond k=15 showed diminishing returns. MRR@k patterns—higher for RF than GBT 

and markedly higher than KNN/CART—underscore that the strongest models not only include the 

correct crop in the list but rank it near the top. For CF, perfect MRR@k and P@k suggest a strong 

memorization effect under environmental similarity; this performance is desirable operationally but 

should be re-validated under stricter geography-aware or farm-holdout splits in future work. Overall, 

k ∈ [10,15] emerges as a practical cut-off that balances list brevity and retrieval coverage for non-CF 

models. 

 

5.6 Decision-support readiness and interpretability artifacts 
 

To translate rankings into actionable guidance, we produced per-site top-k lists accompanied 

by model provenance and feasibility flags. For tree ensembles, feature importance profiles (available 

in the repository artifacts) were inspected to confirm agronomic sensibility (e.g., soil reaction and 

texture consistently among top features). The multi-K tables enable straightforward policy thresholds 

(e.g., minimum P@10 for deployment), while Figures 1–2 provide an at-a-glance comparison that 

stakeholders can interpret without technical detail. Together, these outputs constitute decision-ready 

artifacts that can be embedded into advisory tools. 
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Fig. 1. Comparison of techniques across k∈ {5,10,15,20} 

 

 
Fig. 2. Heatmaps per metric (Precision@k, Recall@k, F1@k, MRR@k)  
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Collectively, these results validate a unified, ranking-based framework for crop 

recommendation: ensembles deliver strong, stable performance; environment-similarity CF yields 

perfect early-rank retrieval under the present split; and feasibility filters safeguard agronomic 

plausibility supporting the study’s aim of producing decision-ready, site-specific crop 

recommendations. 

 

6. Discussion 

 

The unified, ranking-based evaluation shows three consistent patterns visible in Figures 1–2: 

ensemble trees dominate simpler classifiers, an environment-similarity collaborative filter (CF) 

achieves perfect early-rank retrieval under the current split, and an unsupervised K-Means baseline 

remains competitive at larger K. These outcomes follow directly from the metric definitions 

Precision@k, Recall@k, F1@k, and MRR@k which emphasize early placement of the true crop in 

short lists rather than single-label accuracy, explaining why models that concentrate probability mass 

on a few plausible crops score well.  Methodological decisions that enforce a single train/test split 

and shared preprocessing reduce confounding and help isolate algorithmic effects.  The strong K-

Means baseline is consistent with clusters capturing broad agro-ecological regimes; its quantitative 

footprint at k ∈ {5,10,15,20}. 

Relative to prior work, our ensemble results align with reports that tree ensembles excel for 

crop suitability and recommendation, while single trees and KNN trail [5, 6, 7].  Unlike studies that 

emphasize accuracy on narrow geographies, our use of IR-style ranking makes the evaluation 

comparable across method families and directly decision-aligned. Hybrid AEZ/MCDA pipelines 

improve interpretability but depend on hand-tuned weights and rarely yield ranked alternatives; our 

framework complements these by learning non-linear interactions and outputting top-k lists [1, 9].  

CF’s strength extends observations that similarity-based advisories can surface plausible crops even 

with sparse labels [10], yet our results highlight where such methods can over-rely on near duplicates. 

Mechanistically, ensemble advantages are expected: agro-ecological niches comprise thresholds and 

interactions that tree ensembles capture well, matching the theoretical rationale articulated in classic 

ensemble results.  

The CF perfect P@k and MRR@k (Figure 2) is surprising. A plausible explanation consistent 

with our own analysis text is that many test environments have close twins in training, allowing 

nearest-neighbor voting to reproduce the true crop exactly, while cases lacking clear neighbors 

depress recall at small k. This “memorization via similarity” effect is acknowledged and cautions that 

geography-aware or farm-level holdouts should be evaluated next. 

These findings address the unresolved problems by producing ranked alternatives rather than 

binary suitability, enabling fair cross-paradigm comparison via a common top-k protocol (Figures 1–

2), and showing how soft agro-ecological guardrails can be layered without degrading retrieval 

quality, thus connecting rule-based agronomy with data-driven ranking [1, 2]. 

Limitations include reliance on a single held-out split that is not explicitly geography-stratified, 

a single-label relevance assumption that understates multi-crop viability, and minimal hyper-

parameter tuning aimed at comparability rather than per-model optimality. Shortcomings of this study 

are the absence of latent-factor recommenders and deep models for a head-to-head ranking 

comparison, limited uncertainty quantification for end users, and no external validation on 

independently sourced regions. 

In the future, development we should include geography-aware and farm-holdout splits, 

augment latent-factor and hybrid recommenders with ensembles to develop a stronger ranking 

baseline, and implement uncertainty and utility-aware post-processing to threshold top-k lists for 

deployment. Expanding evaluation with standard benchmarks and multi-label relevance will boost 
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reproducibility and relevance while keeping the focus firmly on crop recommendation rather than 

other tenuously connected activities [5, 7, 8]. 

 

7. Conclusion 

 

This study aimed scientifically to develop and validate a unified, ranking-based machine-

learning framework for crop recommendation that integrates agro-ecological compatibility with data-

driven learning and evaluates heterogeneous methods using IR metrics (Precision@k, Recall@k, 

F1@k, MRR@k); and practically to deliver decision-ready, interpretable top-k crop lists for specific 

environments. The main contributions are a principled problem formulation, a standardized multi-K 

evaluation protocol, a cross-paradigm comparison of classifiers, similarity-based recommenders, and 

clustering baselines, the layering of agro-ecological feasibility checks, guidance on operational K cut-

offs, and deployment-oriented artifacts. 

1. The curated corpus (≈10,000 instances; 31 variables; 29 countries; 99 crops; no missing values) 

establishes a robust empirical basis for ranking studies. Its long-tailed target distribution and 

geographic diversity directly address data limitations noted in prior work, enabling credible 

top-k evaluation. The completeness and harmonization reduce confounding and explain the 

stability observed across methods. 

2. Casting crop choice as ranking and judging with IR metrics yields interpretable, decision-

aligned behavior: Precision@k and Recall@k increase with k, while MRR@k is most sensitive 

to early-rank correctness. Because each case has one relevant crop, F1@k largely tracks 

Precision@k. This resolves evaluation heterogeneity in earlier studies by making cross-model 

comparisons fair and directly tied to advisory use. 

3. Ensembles outperform simpler learners, with Random Forest reaching P@20=0.8740 

(MRR@k≈0.34) and Gradient Boosting leading slightly at small K (e.g., P@5=0.5095). KNN 

and CART trail, while K-Means is a competitive unsupervised baseline (P@20=0.8405). The 

environment-similarity CF recommender achieves P@k=1.0000 and MRR@k=1.0000 for all 

k, indicating rank-1 retrieval. Ensemble gains arise from capturing non-linear soil-climate 

interactions; CF’s perfection suggests memorization via near-duplicate environments. 

4. Incorporating agro-ecological feasibility as hard/soft filters preserves retrieval quality (e.g., 

P@20 unchanged for ensembles) while improving the plausibility of top five lists when a top 

one violates constraints. This concretely bridges rule-based agronomy with learned rankings, 

overcoming a key gap in earlier AEZ-style pipelines. 

5. Robustness analysis shows large gains from k=5 to higher k and diminishing returns beyond 

k≈15; for non-CF models, k=10–15 balances brevity and coverage. RF’s rise from 

P@5=0.5015 toward P@20=0.8740 exemplifies this pattern. MRR@k consistently favors 

ensembles over KNN/CART, confirming better early-rank concentration essential for advisory 

settings. 

6. Decision-support artifacts per-site top-k lists with provenance, feasibility flags, and ensemble 

feature-importance profiles make outputs transparent and actionable. Policy thresholds (e.g., 

minimum P@10 for deployment) can now be set against standardized tables and figures, 

supporting operational integration by extension services. 

7. Limitations and future work. Current limits include a single (non-geography-stratified) split, 

single-label relevance, minimal hyper-parameter tuning, and no head-to-head with latent-

factor/deep recommenders. Future research should adopt geography-aware/farm-level 

holdouts, model multi-label relevance, quantify predictive uncertainty and utility, and broaden 

baselines (e.g., matrix factorization, hybrid CF/CBF) within the same ranking protocol. 

Together, these steps will strengthen generalization and further mature crop recommendation 

into a reliable decision-support standard. 



Artughrul Gayibov et al. / Informatics and Control Problems 45 Issue 2 (2025) 

   

   

47 

References 

 
[1] Food and Agriculture Organization of the United Nations (FAO) — Soil Resources, Management and 

Conservation Service; FAO Land and Water Development Division, Agro-ecological Zoning: Guidelines, 

FAO Soils Bulletin 73. Rome: FAO, (1996).  

[2] A.A. Klingebiel, P.H. Montgomery, Land-Capability Classification, USDA Soil Conservation Service, 

Agriculture Handbook No. 210. Washington, D.C.: U.S. Government Printing Office, (1961). 

[3] D.R. Paudel, H.L. Boogaard, A.J.W. Wit, S.J.C. Janssen, S.A. Osinga, C. Pylianidis, I.N. Athanasiadis, 

Machine learning for large-scale crop yield forecasting, Agricultural Systems, 187 (2021) 103016. 

https://doi.org/10.1016/j.agsy.2020.103016  

[4] A. Dorosti, A.A. Alesheikh, M. Sharif, Measuring Trajectory Similarity Based on the Spatio-Temporal 

Properties of Moving Objects in Road Networks, Information. 15 No.1 (2024) 51. 

https://doi.org/10.3390/info15010051  

[5] B. Dey, M. Ferdous, F. Ahmed, A machine learning-based crop recommendation system under the regime of 

soil nutrients (NPK), pH and climatic variables, Heliyon. 10 No.3 (2024) e25112. 

https://doi.org/10.1016/j.heliyon.2024.e25112  

[6] M.K. Senapaty, A. Ray, N. Padhy, A Decision Support System for Crop Recommendation Using Machine 

Learning Classification Algorithms, Agriculture. 14 No.8 (2024) 1256. 

https://doi.org/10.3390/agriculture14081256  

[7] T.A. Shaikh, W.A. Mir, T. Rasool, S. Sofi, Machine Learning for Smart Agriculture and Precision Farming: 

Towards Making the Fields Talk, Archives of Computational Methods in Engineering. 29 (2022) pp.4557-

4597. https://doi.org/10.1007/s11831-022-09761-4  

[8] P. Bandara, T. Weerasooriya, T.H. Ruchirawya, W.J.M. Nanayakkara, M.A.C. Dimantha, M.G.P. Pabasara, 

Crop Recommendation System, International Journal of Computer Applications. 175 No.22 (2020) pp.22-25. 

https://doi.org/10.5120/ijca2020920723 

[9] M.Y. Shams, S.A. Gamel, F.M. Talaat, Enhancing crop recommendation systems with explainable artificial 

intelligence: a study on agricultural decision-making, Neural Computing and Applications. 36 (2024) pp.5695-

5714. https://doi.org/10.1007/s00521-023-09391-2  

[10] M. Hasan, M.A. Marjan, M.P. Uddin, M.I. Afjal, S. Kardy, S. Ma, Y. Nam, Ensemble machine learning-based 

recommendation system for effective prediction of suitable agricultural crop cultivation, Frontiers in Plant 

Science. 14 (2023) 1234555. https://doi.org/10.3389/fpls.2023.1234555  

[11] M. Rashid, B.S. Bari, Y. Yusup, M.A. Kamaruddin, N. Khan, A comprehensive review of crop yield prediction 

using machine learning approaches with special emphasis on palm oil yield prediction, IEEE Access. 9 (2021) 

pp.63406-63439. https://doi.org/10.1109/ACCESS.2021.3075159  

[12] S.M.H. Khatibi, J. Ali, Harnessing the power of machine learning for crop improvement and sustainable 

production, Frontiers in Plant Science. 15 (2024) 1417912. https://doi.org/10.3389/fpls.2024.1417912  

[13] F.S. Prity, M.M. Hasan, S.H. Saif, M.M. Hossain, S.H. Bhuiyan, M.A. Islam, M.T.H. Lavlu, Enhancing 

Agricultural Productivity: A Machine Learning Approach to Crop Recommendations, Human-Centric 

Intelligent Systems. 4 No.4 (2024) pp.497-510. https://doi.org/10.1007/s44230-024-00081-3  

[14] A. Gayibov, CropIntel Dataset: A comprehensive agro-environmental resource for crop classification, 

Irrigation planning, and yield analysis, Mathematics and Computer science, Journal of Baku engineering 

university. (2025). 

 

https://doi.org/10.1016/j.agsy.2020.103016
https://doi.org/10.3390/info15010051
https://doi.org/10.3390/agriculture14081256
https://doi.org/10.5120/ijca2020920723
https://doi.org/10.1007/s00521-023-09391-2?utm_source=chatgpt.com
https://doi.org/10.3389/fpls.2023.1234555
https://doi.org/10.1109/ACCESS.2021.3075159
https://doi.org/10.3389/fpls.2024.1417912
https://doi.org/10.1007/s44230-024-00081-3

